Introduction

- Hepatitis C Virus (HCV) has a global prevalence of 71 million cases with 75% coming from low-and-middle-income countries (LMIC).
- Access to direct-acting antiviral (DAA) medications continues to increase globally, but the availability of diagnostics remains a barrier, especially in LMIC.
- The gold standard to determine HCV cure is the demonstration of SVR with quantitative HCV RNA levels via polymerase chain reaction (PCR) at least 12 weeks after completion of treatment.
- Confirmatory HCV-PCR assays are expensive; in Mumbai, the price for liver function tests is 550 Rupees while the prices for HCV-PCR assays are 2000 Rupees.
- Our aim was to determine if change in ALT can serve as a surrogate marker for SVR.

Methods

- Retrospective cohort study of 149 patients in Mumbai, India.
- Received treatment between 2015-2021.
- All patients treated with DAA approved by FDA equivalent in India, brought back for follow-up 12 weeks after completion of treatment.

Results

- 149 patients included in the study, 128 achieved SVR (86%) and 21 (14%) did not.
- Genotype 3 was most common in the cohort.
- No significant differences in SVR across genotypes, diabetes status, hyperlipidemia, or thyroid disease.
- The change in ALT between initiation and completion of therapy was significantly different based on SVR (p < 0.01).
- Secondary analysis showed that the greater the change in ALT, the higher the positive predictive value of achieving SVR.
- Additional analysis showed that a lower absolute value of ALT after completion of treatment showed higher positive predictive value.

Discussion

- LMIC with high HCV burden face barriers to diagnose SVR via HCV-PCR, and can benefit using ALT as a surrogate marker.
- This is a novel finding and opens new opportunities for monitoring SVR.
- This finding can help in the treatment of HCV in LMIC where liver function tests are cheaper.
- Given that this study was conducted in India, it is limited in its generalizability across different ethnicities and genotypes.
- Further research is needed, especially since this population was ethnically homogeneous.
- Future projects should be conducted in sub-Saharan Africa.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=149)</th>
<th>SVR (n=128)</th>
<th>No SVR (n=21)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in ALT (mean ± SD)</td>
<td>41.8 ± 55</td>
<td>46.7 ± 55.9</td>
<td>11.5 ± 51</td>
<td><0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=149)</th>
<th>SVR (n=128)</th>
<th>No SVR (n=21)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with change in ALT > 10 (n, %)</td>
<td>87 (58.4)</td>
<td>80 (62.5)</td>
<td>7 (33.3)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALT Values after completing treatment</th>
<th>No SVR (n=16)</th>
<th>SVR (n=108)</th>
<th>PPV</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>1 (6.2)</td>
<td>42 (38.9)</td>
<td>97.7</td>
<td><0.01</td>
</tr>
<tr>
<td>20-40</td>
<td>6 (37.5)</td>
<td>47 (43.5)</td>
<td>88.7</td>
<td></td>
</tr>
<tr>
<td>>40</td>
<td>9 (56.3)</td>
<td>19 (17.6)</td>
<td>67.9</td>
<td></td>
</tr>
</tbody>
</table>

1. Department of Medicine, University of Maryland, Baltimore, MD
2. Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
3. Division of Clinical Care & Research, Institute of Human Virology, University of Maryland, Baltimore, MD
4. Yale University, New Haven, CT
5. Department of Hepatology, Institute of Liver Disease, Global Hospitals, Mumbai, India
6. Department of hepatology, H N Reliance Foundation Hospital, Mumbai 400004.