The Clinical Impact of Early Detection of ESBL-Producing Enterobacterales with PCR-Based Blood Culture Assays

Kai-Ming Chang, MD, AAHIVS; Aya Haghmad, PharmD; Patricia Saunders-Hao, PharmD, BCIDP, BCPS AQ-ID; Sumeet Jain, PharmD; Marcia Epstein, MD, FIDSA, FACP; Vincent Streva, PhD, D(ABMM)²; Stefan Juretschko, PhD, D(ABMM)²; Pranisha Gautam-Goyal, MD¹

¹Division of Infectious Disease, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
²Pathology and Laboratory Medicine, Northwell Health Laboratories, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
³Department of Pharmacy, North Shore University Hospital

Introductions

- Bloodstream infections (BSIs) due to extended spectrum beta-lactamase (ESBL) producing Enterobacterales can cause significant morbidity and mortality.
- Starting January 4, 2021, Northwell microbiology lab implemented Genmask Dx® ePlex® Blood Culture Identification (BCID) Panels with the capability to detect blaCTX-M-Type gene.
- Our primary outcome was to assess the impact of BCID on time to appropriate therapy; secondary outcomes were to assess the clinical impact on mortality, 30-day readmission, length of stay (LOS), and total duration of antimicrobial therapy.

Methods

- An 11 hospital, pre/post retrospective analysis of adult patients hospitalized with ESBL Enterobacterales BSI was performed.
- Patients with ESBL Enterobacterales bacteremia were compared pre- and post-implementation of Genmask BCID.
- Time to appropriate therapy was calculated from Gram Stain (GS) result to escalation to a carbapenem.
- In-hospital mortality, length of stay (LOS), and total duration of antimicrobial therapy were analyzed for each cohort.
- Data were analyzed using T-test and Chi-square statistical methods.

Figure 1: Inclusion and exclusion criteria: ED: emergency department, GS: Gram Stain.

Results

Table 1: Study cohort demographics and outcomes. Comorbidities based on ICD10 diagnoses at time of discharge, and chart review.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Pre BCID (n=130)</th>
<th>Post BCID (n=145)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (IQR)</td>
<td>71 (62-83)</td>
<td>72 (65-85)</td>
<td>0.517</td>
</tr>
<tr>
<td>Female sex No. (%)</td>
<td>62 (48%)</td>
<td>63 (44%)</td>
<td>0.544</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comorbidities</th>
<th>Pre BCID (n=130)</th>
<th>Post BCID (n=145)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>55 (42%)</td>
<td>64 (44%)</td>
<td>0.807</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>35 (27%)</td>
<td>44 (30%)</td>
<td>0.539</td>
</tr>
<tr>
<td>Any malignancy</td>
<td>27 (21%)</td>
<td>37 (26%)</td>
<td>0.392</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>23 (18%)</td>
<td>13 (9%)</td>
<td>0.047</td>
</tr>
<tr>
<td>Dementia</td>
<td>22 (17%)</td>
<td>34 (24%)</td>
<td>0.230</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>18 (14%)</td>
<td>21 (15%)</td>
<td>1</td>
</tr>
</tbody>
</table>

- No significant difference was observed in demographics or clinical characteristics between the study groups (Table 1).
- Significant reductions were demonstrated in:
 - Median time to appropriate therapy between pre-ePlex BCID and post-ePlex BCID groups 44.5 to 7.9 hours, p=0.001 (Figure 2)
 - Total duration of antimicrobial therapy between pre-ePlex BCID and post-ePlex BCID groups 14.4 days to 12.7 days, p=<0.001 (Figure 3)
- No significant reduction in LOS, mortality or 30-day readmission was observed.

Limitations: Retrospective study design and inability to control for potential impact of the COVID-19 pandemic.

Conclusions

- In patients with ESBL-producing Enterobacterales BSIs, timely detection of blaCTX-M-Type gene by BCID provides valuable information for early initiation of appropriate and effective antimicrobials.
- Despite the decrease in time to appropriate therapy, and total antibiotic use, no significant improvement in mortality or LOS was observed.

Acknowledgement

We would like to thank Drs. Nilofar Misraidi, Adam Zimilover, Alexander Shaffer, and Seleshi Demissie for data collection and analysis.