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Aim and Background

Significance and Conclusions

High-dimensional Cell Painting and L1000 gene expression (Figure 1) are versatile

biological descriptors of a system.

Dataset and Methods

• Mitochondrial toxicants significantly differ from non-toxic
compounds in morphological space; clusters with similar
mechanisms.

• Cell Painting features granularity features are highly
predictive mitochondrial toxicity.

• Models combining Cell Painting, Gene Expression features
and Morgan Fingerprints relatively improved detection (F1
Scores) of mitochondrial toxicants (by 60% from 0.25 to 0.40)
compared to models using only structural features.

• Models extrapolated well into new chemical space.

• Finally, for detecting mitochondrial toxicants, these models

using hypothesis-free features could perform with better

sensitivity than some dedicated and hypothesis-based

experimental high content imaging assays for mitochondrial

toxicity.

Dataset
in vitro mitochondrial toxicity from Tox21 mitochondrial membrane
potential disruption assay.

Figure 4: Principal Component Analysis of 542 compounds in 110-dimensional Cell Painting feature space. 

Comparison to Previous Machine Learning Models and
Dedicated in-vitro Mitochondrial Toxicity Assays:
In comparison, our method achieve higher sensitivity (0.82 in our
study vs 0.37 in Apredica MitoMass4) with comparable balanced
accuracies (0.68 in our study vs 0.65 in Apredica MitoMass4).

Compounds clustered in 
morphological space having similar 
mechanisms of actions which reduce 
mitochondrial membrane potential. (as 
shown in Figure 4): 

• microtubule disruptors 
• inhibitors of plasma membrane Na+

pump
• Caspase activation/GSH depletion
• Trigger the release of cytochrome C

Mitochondrial Toxicants are More
Similar in Morphological Space
Compared to Structural Space (as
shown in Figure 5) :

Mitotoxic compounds 
considerably vary from non-toxic 
compounds in morphology space 
(median Pearson correlation of 
0.140 vs 0.038).

Figure 8. F1 score for  five models from (a) Nested CV (median of repeated 
nested cross validations) and (b) external test set. 

Early-stage fusion and
Late-stage fusion models
have higher F1 score (as
shown in Figure 8) in
external test sets
compared to models
using Morgan fingerprints
where F1 Score falls by
60% (0.25 to 0.40 in
absolute terms)
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Can integrating Cell Painting Profiles with Gene Expression and Chemical Structure (as
shown in Figure 2) improve detection of mitochondrial toxicity?

Mitochondrial toxicity can be caused by different 
mechanisms as shown in Figure 3:

Models could extrapolate well into new chemical spaces (as shown in Figure 9): 

• Morgan fingerprints correctly classify mitotoxic compounds at low Tanimoto distance to training 

set. 

• Cell Painting descriptors extrapolate well into structurally diverse compounds. 
• However, when the distance to morphological space was high, CP descriptors failed.
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Cell Painting2

1729 numerical Image-
based morphological 
descriptors

Gene Expression3

4438 numerical 
descriptors corresponding 
to different gene 
ontologies. 

Chemical Structure

2048-bit Morgan 
Fingerprint from structure

Morphological space can be a valuable feature space in detecting mitochondrial toxicity
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Figure 9: Comparing prediction of mitotoxic compounds from external test set in chemical and morphological space compared to the training set
for (i) Cell Painting Descriptors, (ii) Morgan fingerprints and (iii) Late-stage fusion models.

Figure 7. Computational significance and biological implication in mitochondrial toxicity of the Cell Painting features that are most positively or negatively correlated to Gene Expression.

Figure 6. Representative images of cells stained using the 
Cell Painting assay upon exposed to drugs Albendazole, 
Colchicine, Mebendazole, Paclitaxel, Parbendazole and 
Podophyllotoxin (microtubule disruptors that induce 
cytotoxicity). These images are publicly available through 
the Broad Bioimage Benchmark Collection 
(https://bbbc.broadinstitute.org/image_sets).

Figure 1. Overview of L1000 technology (Gene Expression) and Cell Painting Technology (cell morphology)

Figure 2. Overview of machine learning strategy used in this study integrating cell 
morphology with Gene Expression and chemical structure for mitochondrial toxicity. 

Figure 3. Major mechanisms of mitochondrial toxicants. Toxicants act on 
multiple pathways to exhibit mitochondrial toxicity, mostly inhibition of 
mitochondrial respiratory chain or uncoupling of oxidative phosphorylation.

Figure 5: Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic) in structural and morphological space

Cell Painting phenotype reveals alterations for
microtubule disruptors (as shown in Figure 6)
• nuclear fragmentation
• multinucleated cells
• vacuolation of the endoplasmic reticulum
• redistribution of the mitochondria and 

cytoskeleton destabilisation

Translating Computational features of the Cell Painting features and Gene Expression features to biological implication in mitochondrial toxicity
Cell Painting and Gene Expression features as shown in Figure 7:

• Unfolded protein response and endoplasmic reticulum stress (RNA variance and cell 
area shape)

• T cell apoptotic processes (mitochondrial granularity and DNA fragmentation) 
• Side of the membrane (RNA granularity and heterogeneity in mitochondria)

Biological significance of Cell Painting features with respect to Mitochondrial Toxicity : 

• Edge intensity of cells (possibly related to integrity of cell wall)
• Radial distribution and intensity in mitochondria (related to mitochondrial death) 
• Granularity features (related to cell death and amount of information contained in 

cellular images)

Biological significance of Gene Expression features with respect to Mitochondrial 
Toxicity : 

• Unfolded protein response (possibly related to ER stress) 
• Plasma membrane (related to membrane depolarisation). 
• Some effects of mitochondrial toxicity were captured by Gene Expression features 

such as oogenesis and dendritic plasma membrane; both processes are heavily 
mitochondria dependent

Results in Predictive Performance

Evaluation

Nested Cross Validation 50 repeated 4-fold nested cross-
validations on 382 compounds.
External Test Set Models were evaluated on an external test set of
236 compounds

3 Individual Models
• Cell Painting,
• Gene Expression
• Morgan fingerprints

Early-stage models 
fusing Cell Painting, 
Gene  Expression and 
Morgan fingerprints 
into a single vector. 

Late-stage model
averaged predicted 
probabilities of the 
three individual models

Model Algorithm: Random Forest

Biological Interpretation of Cell Painting and Gene Expression 

Features for Mitochondrial Toxicity Prediction
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