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shown in Figure 2) improve detection of mitochondrial toxicity?

Dataset and Methods
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mitochondrial respiratory chain or uncoupling of oxidative phosphorylation.

Morphological space can be a valuable feature space in detecting mitochondrial toxicity
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Figure 5: Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic) in structural and morphological space

Translating Computational features of the Cell Painting features and Gene Expression features to biological implication in mitochondrial toxicity
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Figure 7. Computational significance and biological implication in mitochondrial toxicity of the Cell Painting features that are most positively or negatively correlated to Gene Expression.

Results in Predictive Performance

10 Early-stage fusion and

[ Nested CV

BN External Test Late-stage fusion models

8 have higher F1 score (as
shown in Figure 8) in
0.6 -
: external test sets
- compared to models
0.4 1
using Morgan fingerprints
oy where F1 Score falls by
60% (0.25 to 0.40 in
0.0 absolute terms)
&“§Q @‘5’\00 e,&i\& «0(;\00 «0‘}00
e>\Q K «® @Qz .@°’o
“ < Qfo(\ \*\’(o \?;(o
© é\o‘ & NG

Figure 8. F1 score for five models from (a) Nested CV (median of repeated
nested cross validations) and (b) external test set.

Comparison to Previous Machine Learning Models and
Dedicated in-vitro Mitochondrial Toxicity Assays:

In comparison, our method achieve higher sensitivity (0.82 in our
study vs 0.37 in Apredica MitoMass?*) with comparable balanced
accuracies (0.68 in our study vs 0.65 in Apredica MitoMass?).
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Structural Distance to Training Set
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Figure 9: Comparing prediction of mitotoxic compounds from external test set in chemical and morphological space compared to the training set
for (i) Cell Painting Descriptors, (ii) Morgan fingerprints and (iii) Late-stage fusion models.

Models could extrapolate well into new chemical spaces (as shown in Figure 9):

* Morgan fingerprints correctly classify mitotoxic compounds at low Tanimoto distance to training

set.

* Cell Painting descriptors extrapolate well into structurally diverse compounds.
* However, when the distance to morphological space was high, CP descriptors failed.

Significance and Conclusions

 Mitochondrial toxicants significantly differ from non-toxic
compounds in morphological space; clusters with similar
mechanisms.

 Cell Painting features granularity features are highly
predictive mitochondrial toxicity.

* Models combining Cell Painting, Gene Expression features
and Morgan Fingerprints relatively improved detection (F1
Scores) of mitochondrial toxicants (by 60% from 0.25 to 0.40)
compared to models using only structural features.

 Models extrapolated well into new chemical space.

* Finally, for detecting mitochondrial toxicants, these models
using hypothesis-free features could perform with better
sensitivity than some dedicated and hypothesis-based
experimental high content imaging assays for mitochondrial
toxicity.
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