Intermittent Fasting During Systemic Therapy: Evidence for the Oncology Advanced Practitioner

UTSouthwestern
Medical Center

Samantha Thompson, MPH, MCHS, PA-C; Angela F. Bazzell, DNP, APRN, FNP-BC, AOCNP®

UT Southwestern Medical Center, Simmons Comprehensive Cancer Center

Background

- Nearly 48% of patients with cancer actively seek health benefits from special diets to improve disease outcomes.¹
- Intermittent fasting as adjunct to chemotherapy has increased in popularity among patients with cancer.
- Intermittent fasting encompasses a wide spectrum of dietary patterns involving episodes of calorie restriction or calorie reduction over a set period of time.
- Limited research is available examining the feasibility, safety, tolerability, and treatment effects of intermittent fasting during chemotherapy.

Objective

- This purpose of this integrative review is to:
 - Evaluate the evidence of fasting on patients with cancer undergoing systemic therapy
 - Identify limitations in the research to provide oncology advanced practitioners (AP) with evidence-based information to guide clinical decision making

Methods

- A comprehensive literature search was conducted using three databases: Ovid MEDLINE®, Ovid Excerpta Medica Database (EMBASE®), and Cumulative Index to Nursing and Allied Health Literature (CINAHL®).
- The search strategy followed the Population, Intervention, Comparison, Outcome (PICO) framework.²
- The search terms utilized a combination of Medical Subject Heading (MeSH) terms and keywords for various spellings and/or terminology related to cancer, fasting, and chemotherapy.
- A systematic approach was used to identify and screen research studies following the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines.³

Results

Figure 1: Identification of Review Articles

514 articles		507 articles	7 articles included:
identified:		removed:	Randomized Control
Medline (n = 327)	-	Duplicate records	Trial (n = 3)
EMBASE (n = 139)	ı -	(n = 37)	Crossover Trial (n = 2)
CINAHL (n = 48)		Exclusion criteria	Cohort Study (n = 2)
		(n = 470)	

Table 1: Summary of Review Articles

Study	Study Design	Sample Size	Cancer Type	Fasting Protocol	Findings
Dorff et al. 2016 USA	Cohort Study, Prospective	N = 20 • 24 HR, n = 6 • 48 HR, n = 7 • 72 HR, n = 7	Urothelial NSCLC Ovarian Uterine Breast	STS 72 HR	STS, 72 HR: Fasting feasible, safe, less SE, increased treatment response
Bauersfeld et al. 2018 Germany	Randomized Crossover Trial	N = 34 • Group A, n = 18 • Group B, n = 16	Breast Ovarian	STF 60 HR	STF: Fasting feasible, safe, less SE, less dose reductions/cycle delays
de Groot et al. 2020 Netherlands	Randomized Control Trial	N = 129 • FMD, n = 65 • RD, n = 64	Breast	FMD 96 HR	FMD: Fasting feasible, increased treatment response - No difference in SE or dose reductions/cycle delays
Lugtenberg et al. 2020 Netherlands	Randomized Control Trial	N = 129 • FMD, n = 65 • RD, n = 64	Breast	FMD 96 HR	FMD: Fasting feasible, safe
Riedinger et al. 2020 USA	Randomized Control Trial	N = 20 • STF, n = 10 • RD, n = 10	Ovarian Uterine Cervical	STF 48 HR	STF: Fasting feasible, safe, less SE, less dose reductions/cycle delays - No difference in treatment response
Zorn et al. 2020 Germany	Control Crossover Trial	N = 16 • mSTF /RD, n = 7 • RD /mSTF, n = 9	Breast Ovarian Endometrial Cervical	mSTF 96 HR	mSTF: Fasting feasible, safe, less SE, less dose reductions/cycle delays
Tang et al. 2021 Taiwan	Cohort Study, Prospective	N= 12 • SCR, n = 6 • RD, n = 6	Lymphoma	SCR 48 HR	SCR: Fasting feasible, safe

Note. STS = Short-Term Starvation; STF = Short-Term Fasting; FMD = Fasting Mimicking Diet; mSTF = modified Short-Term Fasting; SCR = Short-Term Calorie Reduction; RD = Regular Diet, SE = Side Effects

Table 2: Summary of Fasting Protocols

Intermittent Fasting	Intervention			
Short-Term Starvation (STS)	Limited to no calories from liquids; no food			
Short-Term Fasting (STF)	Limited to no calories from liquids; no food			
Fasting-Mimicking Diet (FMD)	25-50% reduction in total daily calories			
modified Short-Term Fasting (mSTF)	25-50% reduction in total daily calories			
Short-Term Calorie Restriction (SCR)	Water only; no food, liquids, IV fluids			

Results

• The seven articles identified for final review examined four outcomes essential to understanding how fasting impacts patients with cancer and cancer treatment:

Fasting Compliance

Malnutrition

Therapy Side Effects

Cancer Outcomes

- Data suggests overall good compliance, no malnutrition, minimal side effects, and mixed results for cancer outcomes.
- Limitations of the seven studies included small sample size, bias toward gender, race, and cancer type, interventions involving only normal weight patients with body mass index (BMI) > 18 kg/m^2 , variation in fasting protocols, and short-term follow-up surveillance.

Conclusion

- Intermittent fasting as adjunct to chemotherapy in normal weight patients with cancer has the potential to be a feasible, safe, and tolerable nutritional intervention but may not be effective for improving cancer outcomes.
- These current findings are less generalizable to the greater oncology patient population given the limitations identified among the current available literature.
- There is not enough evidence to support intermittent fasting as a nutritional intervention to improve disease or treatment outcomes.
- Large-scale randomized controlled trials are needed to validate the current findings and to determine what future role intermittent fasting may play in cancer management.

Recommendations

- Oncology APs should ask patients about nutrition, as patients may make dietary changes without medical guidance given the growing popularity of special diets.
- Oncology APs should use caution when considering the use of intermittent fasting in adjunct to chemotherapy given the limitations identified in this review and lack of generalizability of results.

References

- Zick, S. M., Snyder, D., & Abrams, D. I. (2018). Pros and Cons of Dietary Strategies Popular Among Cancer Patients. *Oncology (Williston Park)*, 32(11), 542-547.
- 2. Brown, D. (2020). A Review of the PubMed PICO Tool: Using Evidence-Based Practice in Health Education. *Health Promotion Practice*, *21*(4), 496-498. doi:10.1177/1524839919893361
- 3. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*, 372, n71. doi:10.1136/bmj.n71