

INTRODUCTION

Today, using a self-contained Offshore Wind Turbine Installation Vessel (WTIV) is the preferred method of installation for the main component's turbine (Tower, Nacelles and Blades). This vessel type, loads turbine components from a port facility, transports them to the installation site, jacks up into positions and performs the installation. In the United States (US), this activity is regulated by the Jones Act; therefore, this vessel will be required to comply with this regulation, including being built, owned and operated by a US company.

Currently, there is industry reluctance on the ability to build and operate Jones Act compliant WTIV's due to the extensive costs and delays in delivery.

METHOD

This alternative WTIV design is tailored for the US Jones Act Market:

- Designed with focus on the key elements required for a full but practical functionality to install turbine components in the East Coast of the US.
- Obtained input from Developers with installations in Europe.
- Designed with consideration of US shipyards build strategies and capacities.
- Based on proven US operational philosophy.

- depth.

US Jones Act WTIV Alternative

JAN FLORES P.E.

NETSCo, Inc. Naval Architecture and Marine Engineering

WTIV DESIGN BASIS

Minimum Lifting Capacity of 1,100 MT at a 42.5 m radius, based on a NREL 15 MW, upgradable to potential 22 MW with Minimum lift capacity of 1250 MT is considered.

> Jacking system for installation operations in up to 60m water

Dynamic Positioning (DP) system – with DP 2 redundancy level and environmental conditions established for the Northeast Coast of the US:

- 35 Knots Wind
- 2 m Hs
- 1.4 Knot Current

Cargo deck capacity to accommodate minimum of 3 x 15 MW NREL Ref turbine.

Accommodations to support 60 working crew.

CONCLUSION

This alternative WTIV design use as basis lessons learned from successful US building programs including:

- Incorporating simple design techniques from similar vessels already built and operating in the US.
- Vessel hull and hull modules designed with consideration of US shipyard capabilities.
- Critical components such as Jacking System, which is developed in collaboration with companies with experience in fabricating Jacking Systems.
- Consensus from Class and Flag on the applicable rule and regulations.
- Detail Engineering including Class approvals prior to beginning construction.
- Design development cooperation with the various stake holders. This has proven to be a successful model within the US shipbuilding industry.

ACKNOWLEDGEMENTS

- NETSCo Naval Architects Jared Boyd, Julian Fraize and Daniel Lunca
- > OEM's Liebherr, Kongsberg, Wartsila, Flender
- Regulators Lloyd's Register, USCG

REFERENCES

- Lloyds Register Guidance Notes for Wind Turbine Installation Vessels – July 2014.
- IMO guidance (MSC-MEPC.7/Circ.10) Industrial Personnel.
- > ABS Rules for Building and Classing Marine Vessels Part 5D Offshore Support Vessels for Specialized Services.
- Guidelines for the Selection and Operation of Jack-ups in the Marine Renewable Energy Industry – 2013.

CONTACT INFORMATION

Jan Flores P.E. jflores@netsco.us