

BACKGROUND

The world is electrifying, and our power grid needs to rise to the challenge. Ambitious clean energy goals and a desire for energy security are driving an increased demand for electricity, putting pressure on current electric grids. To support a successful clean energy transition and meet the resulting electricity demand, offshore wind industry entities – including regulators, grid authorities, Original Equipment Manufacturers (OEMs), developers and consultants – will need to work hand-in-hand to mitigate grid challenges.

This session will review three of the major grid risks facing the offshore wind industry and discuss future mitigation and opportunities to address those risks.

FLOATING TURBINE BEING TOWED

U.S. Offshore Grid Risks, Mitigation & Opportunities

Mike Spector, Mainstream Renewable Power, U.S. Grid Manager

Risks

1. Transmission Build Timing 2. Interconnection Process 3. Future OEM Capabilities

Mitigation

1. Collaboration between regulators, grid authorities & developers to develop:

- Linkage between lease process & availability of capacity
- Long-range regional transmission planning (FERC 1000)
- A reliable & redundant transmission "meshed" network 2. Standardized criteria & cost allocation for connection approvals 3. Wind turbines will need to adapt to changing grid requirements

Opportunities

Development of Control Systems: • Fast frequency inertial response • Grid forming Equipment Development for floating: Subsea transformers Dynamic export cables • HVDC floating converters

CONCLUSION

We have a once-in-a-lifetime opportunity to reimagine how the power grid can support a successful clean energy transition.

Much of our current grid risks are based on how the grid functions today. The creation of a robust U.S. offshore wind industry offers a chance to develop a more reliable and flexible grid based on existing and future technologies.

The 140-year-old U.S. grid (that has historically delivered synchronous sources of energy) isn't the same grid needed to connect inverter-based, asynchronous offshore wind turbines.

Reaching clean energy goals will require a high-level of collaboration, timing and investment. It will also require the creativity and willingness to use new technologies like floating substations and dynamic cables to create a resilient grid for our future.

ACKNOWLEDGEMENTS

Thank you to Mainstream Renewable Power for the support to work with the ACP Transmission Subcommittee & offshore wind industry on such standardization activities.

REFERENCES

Photo of floating substation from: <u>Design for Floating Offshore</u> Substation to Support Floating Wind Farms (maritime-executive.com)

CONTACT INFORMATION E-mail: mike.spector@mainstreamrp.com