

MRI White-Matter Hyperintensities and Neuropsychological Performance in a Young Adult Clinical Sample

Jory Paredes¹, M.A. & Michael Daniel^{1,2}, Ph.D.
 Pacific University, School of Graduate Psychology, Hillsboro, Oregon¹
 OHSU Hillsboro Health, Hillsboro, Oregon²

Introduction

- White matter hyperintensities (WMH) are patchy areas of increased signal intensity in cerebral white matter detected on MRI¹.
- WMH tend to proliferate with age, and although more common in older adults, they are also identified in young, non-demented and normal aging individuals²
- Findings regarding the cognitive sequela associated with WMH in younger samples are mixed.
- Some studies have found decreased performance on measures of processing speed/attention, memory, working memory, and some aspects of executive functioning in young adults with WMH, though typically with less severity than older adults^{3,4}
- Other researcher has found that WMH were not associated with cognition in those aged 20-59⁵.
- The purpose of this study is to investigate the clinical significance of WMH and neuropsychological performance in a young adult clinical sample.

Method

- Dataset included 607 patients that underwent comprehensive neuropsychological evaluation at OHSU Hillsboro Health in Hillsboro, OR
- Two groups were selected based on MRI results: 1) normal ($n = 50$ (30 females), $M_{age} = 46.20$, $M_{edu} = 15.16$) and 2) WMH without other MRI abnormality ($n = 35$ (20 females), $M_{age} = 47.83$, $M_{edu} = 14.24$)
- Exclusion criteria included dementia, other brain neuropathology (e.g. stroke, neurodegeneration, traumatic brain injury, multiple sclerosis, etc.), below normal scores on performance validity tests, & age >59 .
- Neuropsychological index scores were calculated for five cognitive domains. See table 1.

Main Measures

Table 2. Base Rate Clinical Range Performance

Domain		Well Below Average	Below Average	Low Average	Average	Above Average	χ^2	p-value
Language	WMH	0%	6%	9%	59%	26%	1.11	.78
	Non-WMH	0%	6%	16%	50%	28%		
Visual-spatial/construction	WMH	3%	11%	9%	54%	23%	4.07	.40
	Non-WMH	0%	6%	6%	48%	40%		
Attention/Processing Speed	WMH	3%	9%	14%	71%	3%	8.07	.09
	Non-WMH	0%	4%	10%	63%	22%		
Memory	WMH	0%	20%	14%	46%	20%	5.64	.13
	Non-WMH	0%	4%	16%	58%	22%		
Matrix Reasoning	WMH	3%	15%	15%	27%	39%	8.37	.08
	Non-WMH	0%	4%	4%	32%	60%		
Similarities	WMH	0%	9%	15%	24%	53%	1.59	.66
	Non-WMH	0%	6%	9%	34%	51%		
D-KEFS Trails Switching	WMH	10%	7%	13%	47%	23%	3.43	.49
	Non-WMH	5%	7%	14%	33%	42%		
WCST Composite	WMH	15%	10%	5%	30%	40%	4.68	.32
	Non-WMH	5%	14%	5%	52%	24%		

Table 3. Odds Ratios

Domain	Z-score cut-off -1.67 OR (95% CI)	p-value	Z-score cut-off -1.00 OR (95% CI)	p-value
Language	4.52 (0.18-114.36)	.36	0.56 (0.10-3.08)	.51
Visual-spatial/Construction	6.19 (0.66-58.03)	.11	2.81 (0.75-10.49)	.12
Attention/Processing Speed	2.97 (0.26-34.10)	.38	3.93 (0.94-16.39)	.06
Memory	1.45 (0.20-10.85)	.71	2.13 (0.71-6.40)	.18
Similarities	0.26 (0.01-5.67)	.39	1.80 (0.50-6.47)	.37
Matrix Reasoning	4.60 (0.46-46.32)	.20	8.44 (1.69-42.22)	.01*
D-KEFS Trails Switching	1.95 (0.48-7.97)	.35	1.59 (0.52-4.86)	.41
WCST Composite	1.06 (0.28-4.05)	.93	1.22 (0.35-4.27)	.75

Results

- Independent samples t-test revealed statistically significant group differences at $p < .05$ for: Block Design, $t(81) = 2.47$, $p = .02$, $d = .55$; Spatial Span Backward, $t(80) = 2.16$, $p = .03$, $d = .49$; Digit Span Backward, $t(69) = 2.04$, $p < .05$, $d = .49$; DKEFS Trails Number, $t(53) = 3.19$, $p < .001$, $d = .78$; DKEFS Trails Letter, $t(72) = 2.53$, $p = .01$, $d = .59$; and Matrix Reasoning, $t(54) = 2.15$, $p = .04$, $d = .52$. Effect sizes were small to medium and ranged from .49 - .78.
- Neuropsychological index scores were calculated for five cognitive domains (Table 1) and then categorized in the following clinical ranges: well below average = z-score ≤ -2.35 ; below average = z-score -2.34 to -1.3 ; low-average = z-score -1.29 to -0.67 ; average = z-score -0.66 to 0.66 ; above average = z-score ≥ 0.67 . A chi-square analysis was run comparing base rates across these clinical ranges for the WMH and normal groups. No significant differences were found in any cognitive domain (table 2).
- Odds ratios for each cognitive domain were calculated to determine the odds of a person with WMH having an impaired score relative to a person without WMH, using z-score cut-offs of -1.67 and -1.00 . Results indicated that individuals with WMH were eight times more likely of having an index z-score ≤ -1.00 on Matrix Reasoning, a visually presented test of reasoning ($OR = 8.44$, $p = .01$, 95% CI: 1.69-42.22). Odds ratios were not significant at the -1.67 or -1.00 z-score cut-offs for any other cognitive domain, though a trend was nearing statistical significance at the -1.00 z-score cut-off on attention/processing speed tests ($p = .06$). See table 3.

Conclusions

- Similar to prior research, the WMH group's neuropsychological test performance differed, with effect sizes ranging from .49-.78.
- However, mean scores were within the average range for both groups on virtually all tests, suggesting differences have limited clinical applicability to the individual patient with WMH on MRI.
- Base rate comparisons showed no statistically significant differences among the proportion of these two groups within any clinical ranges. However, a trend was observed in the proportion of the WMH group in low average to below average ranges on attention/processing speed tests ($p = .09$), and on an executive function test of reasoning ($p = .08$).
- Odds ratios indicate individuals with WMH are 8 times more likely to have a score below average, in the 5th-16th percentile range, on a visually presented test of reasoning. However, they are no more likely than normals to have substantially below average scores less than the 2nd percentile.
- Taken together, these findings indicate that even in young adult clinical samples, WMH may represent subtle decline in attention/processing speed, and an increased probability of mild inefficiency/decline on some aspects of executive functioning.

References

- Merino, J. (2019). White matter hyperintensities on magnetic resonance imaging: What is a clinician to do? *Mayo Clinic Proceedings*, 94(3), 380-382. <https://doi.org/10.1016/j.mayocp.2019.01.016>
- Hopkins, R., Beck, C., Burnett, D., Weaver, L., Victoroff, J., & Bigler, E. (2006). Prevalence of white matter hyperintensities in a young healthy population. *Journal of Neuroimaging*, 16(3), 243-251. <https://doi.org/10.1111/j.1525-6669.2006.00047.x>
- Weinstein, G., Mallard, P., Himmelfarb, J. J., Beiser, A. S., Au, R., Wolf, P. A., Seshadri, S., & DeCarli, C. (2015). Glucose indices are associated with cognitive and structural brain measures in young adults. *Neurology*, 94(23), 2329-2337. <https://doi.org/10.1212/WNL.0000000000001655>
- Garcia-Crespo, A., Bouquerel, S., Wirth, M., Andre, C., Delano, M., Landwehr, P., Menezes, F., Kuhne, E., Gonzeaud, J., Chocat, A., Quillard, A., Ferrand-Degue, E., de La Sayette, V., Viaten, D., Krokael-Salmon, P., & Chételat, G. (2020). White matter hyperintensities across the adult lifespan: relation to age, A_B load, and cognition. *Alzheimer's Research & Therapy*, 12(1), 1-127. <https://doi.org/10.1186/s13195-020-00664-9>
- Vannorsdall, T., Waldstein, S. R., Kraut, M., Pearson, C. V., & Schretlen, D. J. (2009). White matter abnormalities and cognition in a community sample. *Archives of Clinical Neuropsychology*, 24(3), 209-217. <https://doi.org/10.1089/clin.2007.037>