

Reward Learning Bias and Risky Decision-Making Moderate ADHD Symptom Associations with Emotion Dysregulation

Essence Baker, B.A., Caitlin Tyler, M.A., & Ilya Yaroslavsky, PH.D
Department of Psychology, Cleveland State University

Introduction

- Inattention, hyperactivity, and impulsivity are defining Attention Hyperactive Deficit Disorder (ADHD) characteristics (Corbisiero et al., 2013).
- The propensity to prioritize immediate gains above potential future losses of a greater magnitude (risky decision-making) and a heightened sensitivity to rewards are linked to impulsivity (Dekkers et al., 2022). These tendencies reflect transdiagnostic individual differences that heterogeneously cluster within the ADHD population and may be drivers of ADHD symptoms (Grimm et al., 2021).
- Emotion Dysregulation (ED), reflecting individuals whose emotional responses fall out of normal range, has also gained increasing traction as a transdiagnostic process associated with ADHD symptoms (Llewellyn, 2008), and with links to risky decision-making and reward sensitivity.
- Indeed, growing evidence closely associates ED with impulsivity, goal-undirected behaviors and ineffective distress management, as well as with functional impairment experienced by those with ADHD (Shaw et al., 2014). Deficits in emotion regulation have been identified as a mediator on the relationship between ADHD and depression symptoms in adults. Additionally, research indicates that emotion regulation mediates the relationship between ADHD symptoms and relationship quality (Bodalski et al., 2019). Thus, demonstrating the extensive impact of ED deficits affects among functional outcomes.
- Though linked with ADHD and ED, risky decision-making and reward sensitivity are independent constructs, and it is unknown whether their presence differentially connects ADHD symptoms with ED.
- This study tested the moderating roles of risky decision making and reward sensitivity effects between reported ADHD symptoms and tendencies to engage in impulsive, goals-undirected behaviors when in distress, and difficulty managing distress within a university student sample.

Hypotheses

H1: ADHD symptoms, risky decision-making, and reward sensitivity will positively correlate with ED impulsivity, goal-undirected behavior, and poor distress management facets.

H2: Risky decision-making and reward sensitivity will potentiate the association between ADHD and ED facets.

References

Bodalski, E.A., Knouse, L.E., & Kovalev, D. (2019). Adult ADHD, Emotion Dysregulation, and Functional Outcomes: Examining the Role of Emotion Regulation Strategies. *J Psychopathol Behav Assess* 41, 81–92 (2019). <https://doi.org/10.1007/s10862-018-9695-1>

Corbisiero, S., Stieglitz, R. D., Retz, W., & Rösler, M. (2013). Is emotional dysregulation part of the psychopathology of ADHD in adults?. *Attention deficit and hyperactivity disorders*, 5(2), 83–92. <https://doi.org/10.1007/s12402-012-0097-z>


Dekkers, T. J., De Water, E., & Scheres, A. (2022). Impulsive and risky decision-making in adolescents with attention-deficit/hyperactivity disorder (ADHD): The need for a developmental perspective. *Current opinion in psychology*, 44, 330-336.

Grimm, O., van Rooij, D., Hoogman, M., Klein, M., Buitelaar, J., Franke, B., ... & Plichta, M. M. (2021). Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders. *Neuroscience & Biobehavioral Reviews*, 128, 165-181.

Shaw, P., Stringaris, A., Nigg, J., & Leibenluft, E. (2014). Emotion dysregulation in attention deficit hyperactivity disorder. *The American journal of psychiatry*, 171(3), 276–293. <https://doi.org/10.1176/appi.ajp.2013.13070966>

Llewellyn, D. J. (2008). The Psychology of Risk Taking: Toward the Integration of Psychometric and Neuropsychological Paradigms. *The American Journal of Psychology*, 121(3), 363–376. <https://doi.org/10.2307/20445472>

Luo, Y., Weibman, D., Halperin, J. M., & Li, X. (2019). A Review of Heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). *Frontiers in human neuroscience*, 13, 42. <https://doi.org/10.3389/fnhum.2019.00042>

In this experiment, you will be asked to repeatedly select a card from one of the four decks above. You can select a card by clicking the mouse on one of decks.

With each card, you can win some money, but you can also lose some. Some decks will be more profitable than others. Try to choose cards from most profitable decks so that your total winnings will be as high as possible.

You will get 100 chances to select a card from the deck that you think will give you the highest winnings. Your total earnings and the number of cards selected will be displayed on screen.

You start with \$2000. Click "Start" to begin.

In this experiment you will be presented with either a face with a Big mouth, or a face with a Little mouth. You will see them one at a time.

Your task will be to decide whether a Big or Little mouth was presented by pushing the correct button as quickly and accurately as possible.

The 'v' key will be used to identify the Big mouth and the 'm' key will be used to identify the Little mouth. Examples of what the mouth sizes look like are below:

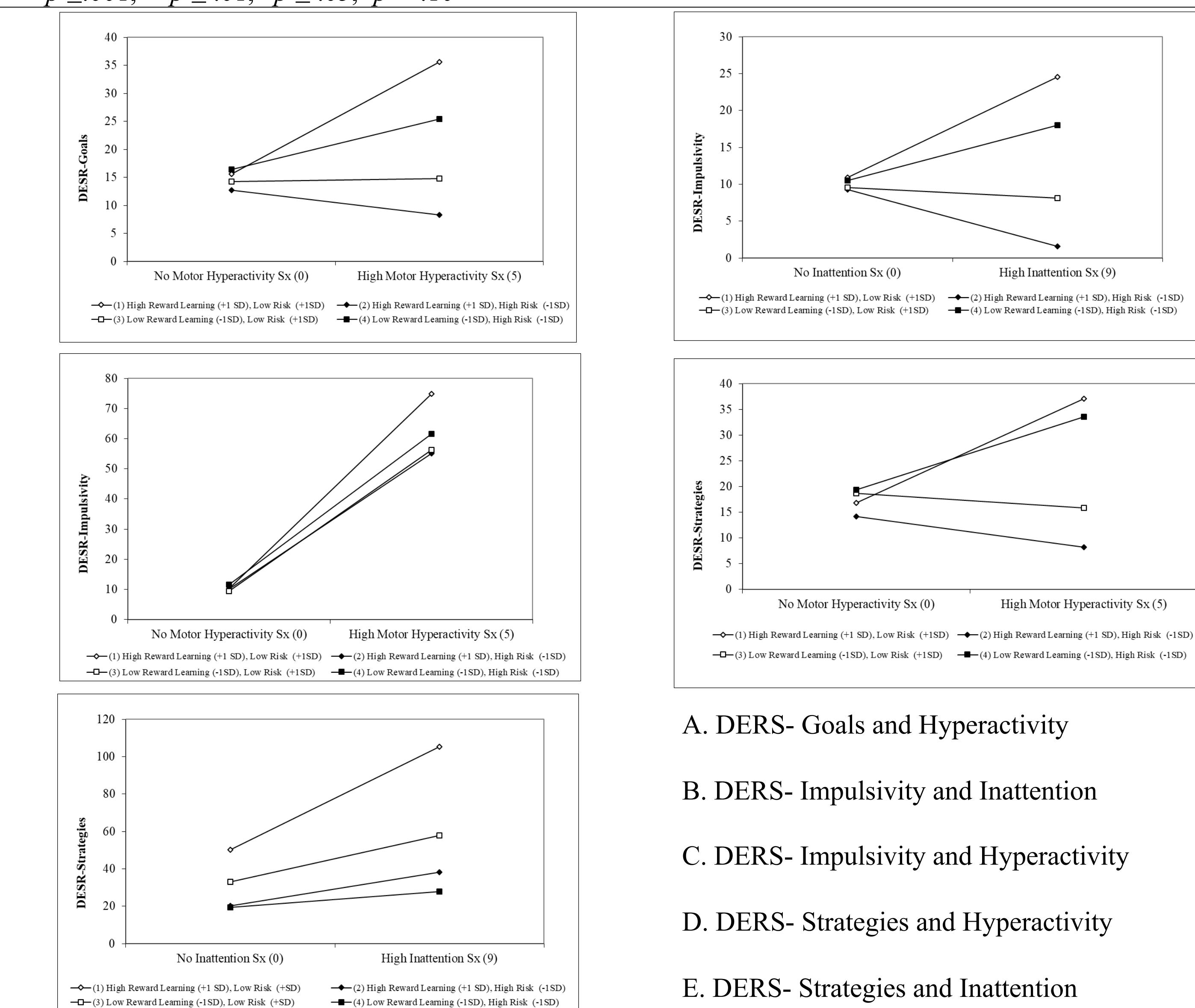

Figure 1. Iowa Gambling Task (above) and Probabilistic Reward Learning Task stimuli (below).

Table 1. Descriptive statistics and bivariate correlation of study variables.

Variables	<i>M</i> (<i>SD</i>)	1.	2.	3.	4.	5.	6.	7.	8.	9.
1. Age	19.84 (3.15)	---								
2. Sex (male)	---	-.19	---							
3. R. Sens.	.11 (.40)	-.17	-.19	---						
4. Risk Dec.	-5.58 (32.26)	-.19	-.01	.05	---					
5. Attn.	3.26 (2.07)	-.05	.03	-.30*	-.15	---				
6. Imp. M.	1.05 (1.12)	-.12	.19	-.08	-.18	.29*	---			
7. Imp. V.	.91 (1.11)	.03	.17	-.10	-.19	.32*	.20	---		
8. Goals	14.65 (4.85)	-.39**	.21	-.14	-.05	.44**	.24†	.10	---	
9. Impulsivity	10.12 (3.94)	-.17	.26*	-.19	-.24†	.30*	.16	.20	.62***	---
10. Strategy	17.25 (6.85)	-.28*	.27*	-.27*	.00	.38*	.16	.11	.64***	.67***

Note. R. Sens.= Reward Sensitivity, Risk Dec.= Risky Decision-Making, Attn= Attention, Imp. M.= Motor Hyperactivity , Imp. V.= Verbal Hyperactivity, DERS Scales= Goals, Impulsivity and Strategy.

****p* ≤ .001, ***p* ≤ .01, **p* ≤ .05, †*p* < .10

Figure 2. DERS Interaction Figure A-E (above).

Method

Participants

N= 57 university students (74% female, M = 19.84 years old, SD = 3.15) who completed self-report measures and were told that task performance would influence their honorarium was contingent on risky-decision making (Iowa Gambling Task) and reward sensitivity (Probabilistic Reward Learning Task) task performance (see Figure 1)

Measures

- Difficulties in Emotion Regulation Scale (DERS) – impulsivity, goals & management subscales
- Adult ADHD self report scale – inattention & motoric and verbal hyper-activity subscales

Results

- H1: As expected, inattention symptoms positively correlated with the three DERS subscales, reduced reward sensitivity, as did risky-decision making with poor distress management (see Table 1). In contrast to expectation, neither reward sensitivity nor the motoric or verbal hyperactivity correlated with ED.
- H2: MANOVAs predicting the DERS subscale revealed significant three-way interactions between risky decision-making, reward sensitivity, and motoric hyperactivity $F(3,47) = 3.42$, $p = .025$) and inattention at a trend level $F(3,47) = 2.73$, $p = .055$.
- Follow-up ANOVAs ($Fs = 6.00 - 8.45$, $ps < .02$) and post-hoc probes revealed that patterns of high reward sensitivity and low risky decision making were consistently linked with greater ED as a function increasing motor hyperactivity and inattention symptoms, as was the pattern of low reward bias and high risky decision-making (see Figures A-E).
- A high reward bias combined with low risky decision-making reduced the tie between ADHD symptoms (motor hyperactivity and inattention) and ED facets.
- Conversely, a combination of risky decision making in the context of high reward sensitivity presaged the strongest link between ADHD and ED.

Conclusion

- Results suggest a nuanced interplay between decision-making, reward bias, and ADHD symptoms in relation to ED, which is consistent with others finding ADHD to be a heterogeneous disorder (Luo et al., 2019).
- The salubrious low risky decision-making—high reward learning pattern may point to intact decision-making processes that may protect against ED, despite ADHD symptom elevations, and low depression levels that co-occur with ADHD, but were not measured in this study. Conversely, the strong ADHD-ED associations with risky decision-making in conjunction with reward responsiveness mirrors findings within the extant literature.
- The notable link between ADHD and ED for those with low risky decision making-low reward sensitivity and converse effects of the risky-decision-making—low reward sensitivity are curious and warrant further investigations, as do the clinical implications of our findings.