

Claire Stafford, B.A., Rachel Geller, B.S., Charles Golden, PhD, Daniel Amen, MD, and Kristen Willeumier, PhD
Nova Southeastern University

Objective

The aim of this study is to investigate the effect of the administration of the Conners Continuous Performance Test (CPT-3) on cerebral blood flow (CBF) in children with ADHD.

Methods

The data for this study was derived from a large de-identified single-photon emission computed tomography (SPECT) database. Participants in the ADHD group ($n=1853$, $M_{age}=12.01$) included individuals under the age of 18 given a formal ADHD diagnosis. Participants in the control group ($n=38$, $M_{age}=11.70$) were healthy individuals with no prior mental health diagnoses. All participants were assessed for cerebral blood flow levels before and after CPT-3 administration. Participants with co-morbid diagnoses were included. Race, gender, and age were considered covariates.

Results

-Multiple 2-by-2 ANOVAs with repeated measures were conducted with sphericity assumed. The interaction between CPT-3 administration and ADHD diagnosis was not significant in any brain region assessed (all p -values>0.05).

-The overall effect of ADHD diagnosis on CBF levels was not significant in any brain region assessed (all p -values>0.05).

-The overall effect of CPT-3 administration on CBF levels was significant in the right cingulate [$F(1,1809)=4.057$, $p=0.044$, $\eta_p^2=0.002$], left and right sides (respectively) of the frontal lobe [$F(1,1809)=5.401$, $p=0.020$, $\eta_p^2=0.003$]; [$F(1,1809)=3.873$, $p=0.049$, $\eta_p^2=0.002$], left and right sides of the occipital lobe [$F(1,1809)=12.919$, $p<0.001$, $\eta_p^2=0.007$]; [$F(1,1809)=11.364$, $p<0.001$, $\eta_p^2=0.006$], left and right sides of the parietal lobe [$F(1,1809)=6.629$, $p=0.010$, $\eta_p^2=0.004$]; [$F(1,1809)=5.035$, $p=0.025$, $\eta_p^2=0.003$], left and right sides of the subcortical region [$F(1,1809)=5.042$, $p=0.025$, $\eta_p^2=0.003$]; [$F(1,1809)=4.756$, $p<0.029$, $\eta_p^2=0.003$].

-Post hoc analysis with a Bonferroni adjustment revealed that CBF levels were statistically significantly increased from baseline to following CPT-3 administration in both the ADHD and control groups (respectively) significantly increased from baseline to following CPT-3 administration in the left side of the occipital lobe [2.069(95%CI, 1.168 to 2.970)]; [2.724(95%CI, 0.941 to 4.507)], right side of the occipital lobe [1.662(95%CI, 0.816 to 2.508)]; [2.174(95%CI, 0.498 to 3.849)], left side of the parietal lobe [1.124(95%CI, 0.856 to 1.393)]; [2.181(95%CI, 0.321 to 4.041)], and right side of the parietal lobe [0.941(95%CI, 0.679 to 1.202)]; [1.907(95%CI, 0.095 to 3.720)].

-Significant increases were found in the ADHD group in the right side of the cingulate [0.357(95%CI, 0.587 to 0.128)], left side of the frontal lobe[0.880(95%CI, 0.016 to 1.744)], right side of the frontal lobe [0.394(95%CI, 0.113 to 0.617)], left subcortical regions [0.603(95%CI, 0.368 to 0.838] and right subcortical regions [0.617(95%CI, 0.383 to 0.851)].

Discussion

While the interaction between administration of CPT-3 and ADHD was not significant in the brain regions assessed, the main effect of CPT-3 on CBF levels was found to be significant such that following the administration of CPT-3, individuals had higher levels of CBF than before the administration of CPT-3. Without an interaction, we can infer that ADHD diagnosis does not change the effect of CPT-3 administration on CBF levels. This is counterintuitive considering that CPT-3 is a test of sustained attention, a common challenge for children with ADHD.

Contact Information

Contact Claire Stafford with further questions.
Telephone: (210) 861-7808
Email: cs3374@mynsu.nova.edu