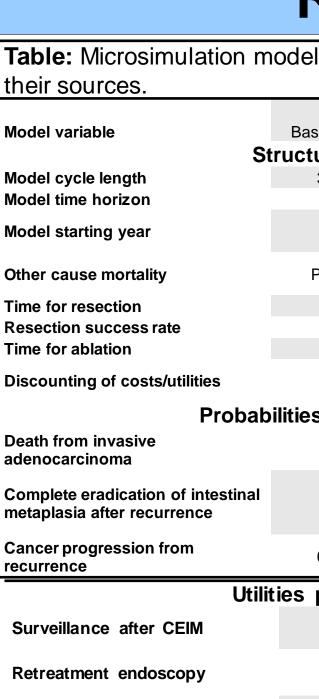
A Cost-Utility Model Supports Changes in Post-treatment Surveillance Associated with the 2022 American College of Gastroenterology Guidelines.

Cary Cotton, MD MPH¹, Swathi Eluri, MD MSCR¹, Meera Parikh, BS¹, Susan Moist, BS¹, Ariel Watts, BS¹, Nicholas Shaheen, MD MPH¹


Introduction

- Radiofrequency ablation is a safe and effective treatment for neoplastic Barrett's esophagus (BE).
- Surveillance after endoscopic eradication has only been studied observationally without any studies of this disease's natural history.
- Recent natural history modeling work has allowed qualified estimation of a natural history scenario.
- •. We sought to apply our multi-state model of postablation natural history to study the cost effectiveness of surveillance after endoscopic eradication of neoplastic BE.

Methods

- Study design: Microsimulation cost-utility analysis
- Population: Simulated to match the distribution of age, gender, baseline segment length, and worst presurveillance histologic grade in the United States Radiofrequency Ablation registry.
- Intervention: Surveillance according to the 2022 American College of Gastroenterology guidelines.
- **Comparator:** Simulated natural history of recurrence and progression.
- Transition probabilities for the natural history were estimates from recently published multi-state models.

- depend on age.
- and death.

Esophageal adenocarcinoma

1) Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill

• The model was Markov generalized to allow differing rates of progression based on BE characteristics as covariates to the multi-state model and for other-cause mortality to

• There were states for: no recurrence, recurrence with various histologic grades, ablative re-treatment, endoscopic mucosal resection, invasive adenocarcinoma,

We considered a willingness-to-pay threshold of 100,000 2017 US dollars (\$) per quality-adjusted life year (QALY).

Results

el parameters in the base case scenario and			
ase case value ctural model	Reference/details assumptions		
3 months 10 years			
2017	For other-cause mortality and inflation adjustment		
Population	2020 Social Security actuarial cohort life tables		
1 cycle 100% 1 cycle	Resection for all recurrent HGD or IMC Simplifying assumption Repeated until successful		
3%	Per year		
es per cycle from the literature			
7.63%	SEER 5-Year Relative Survival Rates 2012-2018*		
57.7%	Guthikonda et al., The American Journal of Gastroenterology, 2017		

0.1625%	Guthikonda et al., The American Journal of Gastroenterology, 2017

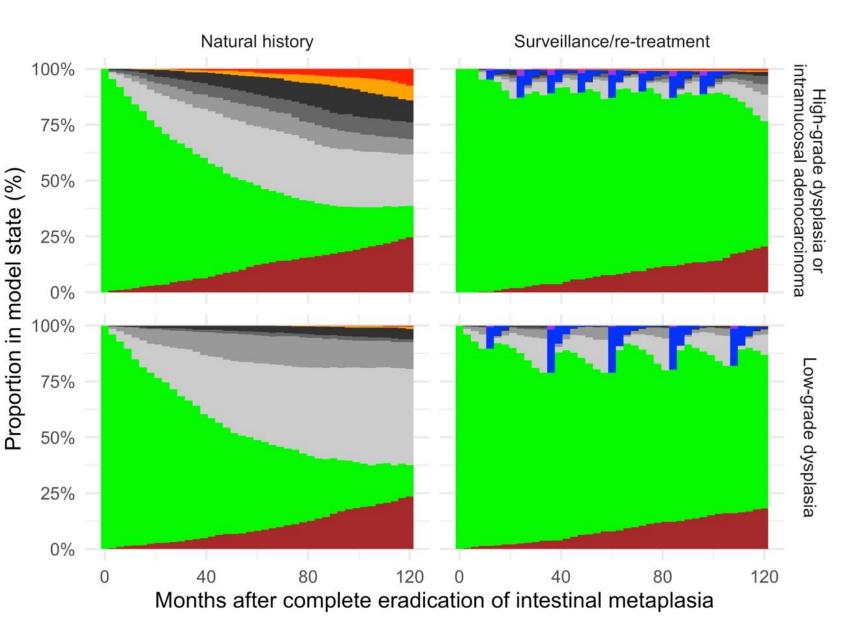

Utilities per cycle from the literature Boger et al., Alimentary Pharmacology and 97% Therapeutics, 2010 Boger et al., Alimentary Pharmacology and 94% Therapeutics, 2010 Boger et al., Alimentary Pharmacology and 96% Therapeutics, 2010

Table continued: Microsimulation model parameters in the base case scenario and their sources.

	Costs per cycle from the literature		
Surveillance endoscopy	\$1,019	Inadomi et al., Gastroenterolog	
Cost of cancer care	\$13,532	Inadomi et al., Gastroenterolog	
Cost of ablation re-treatment	\$4,317	Inadomi et al., Gastroenterology, 2 half cost of initial treatm	
Cost of resection re-treatment	\$934	Filby et al., Journal of Comparative Research, 2017**	

*Assumes cumulative incidence = 1 – e⁽-incidence x time), †Assuming 17.7% inflation **Assumes 133% exchange rate with the British Pound.

Figure: Microsimulation model parameters in the base case scenario and their sources.

Model state

Invasive adenocarcinoma mortality Invasive adenocarcinoma progression Resection re-treatment of recurrence Ablative re-treatment of recurrence Intramucosal adenocarcinoma recurrence

High-grade dysplasia recurrence Low-grade dysplasia recurrence Non-dysplastic recurrence Complete eradication of intestinal metaplasia Other-cause mortality

- ogy, 2009†
- ogy, 2009† 009†Assumed
- ve Effectivenes

• In the base case scenario of the model, surveillance and re-treatment decreased progression to invasive esophageal adenocarcinoma at ten years by 1.2% in LGD and 13.0% in HGD/IMC.

Center for

Esophageal

Swallowing

Diseases

And

• Compared to the natural history scenario, the incremental cost effectiveness ratio for surveillance at ten years was \$79,125 for LGD and \$10,952 for HGD/IMC.

Conclusions

- In the base case scenario of this cost-utility model, newly recommended surveillance intervals were highly cost effective for HGD/IMC and approached the margins of cost-effectiveness for LGD in a microsimulation cost-utility model.
- This supports the new guideline recommendation to decrease the frequency of posttreatment surveillance of HGD/IMC and LGD.
- · While development of the model requires probabilistic sensitivity analysis and calibration, the model has the potential to inform the health economics of clinical processes after CEIM.