Assessing Lower Extremity Hypoperfusion in ICU Patients on Vasopressors Using Thermographic Imaging

Roxanne O'Sullivan, BSN, RN, CWOCN (roxanne.o'sullivan@hhchealth.org); Kimberlee Cheney, BSN, BA, RN, CWOCN; David M. O'Sullivan, PhD; Lisa Q. Corbett, APRN, DNP, CWOCN

INTRODUCTION

- Critically ill patients are known to be at an increased risk for pressure injury development¹.
- Vasopressors treat hypotension in critically ill patients by constricting distal blood vessels and are predictive of pressure injury development²,³.
- Heels are one of the most common locations for pressure injuries in ICU patients⁸.
- Distal hypoperfusion related to vasopressor use is associated with ischemic injury to the extremities⁴.
- Infrared thermography is a reliable tool to identify changes in tissue perfusion^{5,6}.
- Enhanced skin assessment using infrared thermography in critically ill patients is a best practice recommendation and may improve the understanding of primary etiology of skin changes⁷.

The purpose of this study is to compare distal lower extremity hypoperfusion in critical care patients who were treated with or without vasopressors using infrared thermography.

METHODS

- Convenience sample of patients admitted to two critical care units at a 900 bed level-1 trauma center
- Infrared thermography protocol completed on all patients within eight hours of admission by trained RNs
- Retrospective analysis of thermographic images of patients who met inclusion criteria
- Blinded analysis of thermographic images performed by Wound Team; temperature differential from knee to heel.
- Demographic data extracted from EMR. Statistical analysis comparing patients with and without vasopressor therapy.

Figure 1. Thermographic Image **Assessment Example**

- Infrared thermography image demonstrating lower extremity hypoperfusion
- Gradient measured from knee to heel
- Graph shows 6° C temperature differential along the extremity

Inclusion Criteria:

- \geq 18 years old
- Admitted from 7/2020-12/2020
- Unobstructed thermographic scan from knee to heel

Table 1. Demographics	
	N
Gender	
Female	55
Male	80
Age (mean)	
Vasopressor group	63.67 (S.D. ±15.88)
No vasopressor group	60.71 (S.D. ±14.69)
Pace	
White	106 (78 5%)
Black/African American	100(78.3%) 10(7.4%)
A sign/Pacific Islander	3(2,2%)
Unknown	5(2.270) 16(11.0%)
UIIKIIOWII	10 (11.9%)
Ethnicity	
Non-Hispanic	117 (90%)
Hispanic	13 (10%)
Coronomy Artemy Disease	79(5770/)
Coronary Aftery Disease	78(57.7%)
Peripheral vascular Disease	50 (41.5%) 50 (27.0%)
Diabetes Mellitus	50 (37.0%)
Hypertension	83 (61.5%)
Admitting Diagnosis	
Cardiac	45(333%)
Sensis/Sentic shock	+3(33.3%) 18(13.3%)
Gastrointestinal	9 (6 67%)
Respiratory	$\int (0.07/8)$
Vascular	+(3.070) 19(1/11%)
Renal	3(7.7%)
Neonlasm	S(2.270) 8(50%)
Trauma	(3.7 / 0) 18 (13 30%)
Neuro	3(7.70%)
Other	S(2.270) 8(500%)
Unici	0 (J.770)
Cardiovascular Risk	70 (51.9%)

RESULTS

- N=135 Patients met Inclusion Criteria 38.5% of sample required vasopressors • 2 patients developed wounding to the lower extremity • 70 patients with lower extremity hypoperfusion

- Significant increase in knee to heel temperature differential was noted in patients with multiple (\geq 2) vasopressors when compared to patients with no vasopressors (left leg P = .013, right leg P = .031)
- No significant difference when comparing patients with one vasopressor to those with no vasopressors
- No significant difference comparing patients who had never received vasopressors and those who had previously received vasopressors

CONCLUSION

- Patients on vasopressor support are at high risk for skin injury from pressure and tissue ischemia.
- Risk of injury may rise when multiple vasopressors are needed due to decreased lower extremity perfusion
- Using infrared thermography to detect tissue ischemia in patients requiring vasopressors will help practitioners determine the primary etiology of lower extremity wounds.
- This contributes to the objective evidence discerning primary wound etiology in critically ill patients.

REFERENCES

- 24(6), 501-510 patients the cause of acute limb ischemia. HAND, 15(2): 177-184
- Care, 33: 482-488.
- unit patients: the DecubICUs study. Intensive Care Medicine.

- 1) Cox, J. & Schallom, M. (2021) Pressure injuries in critical care patients: A conceptual schema. Advances in Skin & Wound Care, 34(3), 124-
- 2) Russell, J. A. (2019). Vasopressor therapy in critically ill patients with shock. *Intensive Care Medicine*, 45: 1503-1517. 3) Cox, J. & Roche, S. (2015). Vasopressors and development of pressure ulcers in adult critical care patients. American Journal of Critical Care,
- 4) Newbury, A., Harper, K.D., Trionfo, A., Ramsey, F.V., & Thoder, J.J. (2018). Why not life and limb? Vasopressor use in intensive care unit
- 5) Koerner, S., Adams, D., Harper, S.L., Black, J.M., & Langemo, D.K. (2019). Use of thermal imaging to identify deep-tissue pressure injury on admission reduces clinical and financial burden of hospital-acquired pressure injuries. Advances in Skin & Wound Care, 32(7), 312-320. 6) Ilo, A., Romsi, P., & Makela, J. (2020) Infrared Thermography as a diagnostic tool for peripheral artery disease. Advances in Skin & Wound

7) European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. Emily Haesler (Ed.). EPUAP/NPIAP/PPPIA: 2019. Labeau, S. O., Afonso, E., Benbenishty, J. et al. (2020) Prevalence, associated factors and outcomes of pressure injuries in adult intensive care