Sereng Group Building the Nation's Leading Wound Care Team

Point-of-Care Fluorescence Imaging Reveals Extent of Chronic Inhibitory Bacterial Load in Diabetic Foot Ulcers

David Armstrong¹, Michael E. Edmonds², Thomas E. Serena³

¹Division of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; ²Diabetic Foot Clinic, King's College Hospital Foundation Trust, London, UK; ³SerenaGroup Research Foundation, Cambridge, Massachusetts, USA

BACTERIAL INFECTION IN DFUS

DFU infections are the initiating event in more than 85% of diabetes-related lower limb amputations.¹

Diabetes weakens the immune response and associated comorbidities (e.g., neuropathy) can **mask the clinical signs and symptoms (CSS) of infection**, delaying diagnosis. ^{2,3}

Elevated bacterial burden is known to prolong healing and increase the risk of infection.⁴

Objective diagnostic measures are required to identify regions of chronic pathogenic bacteria and facilitate its thorough removal.

OBJECTIVES

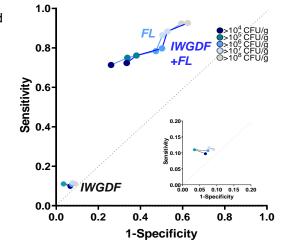
- Determine the sensitivity of IWGDF criteria for detecting DFUs with elevated bacterial burden.
- Investigate how adding fluorescence imaging to the DFU assessment regime affects bacterial detection sensitivity.

Post-hoc analysis of 138 DFUs from a prospectively powered, multi-center FLAAG clinical trial:

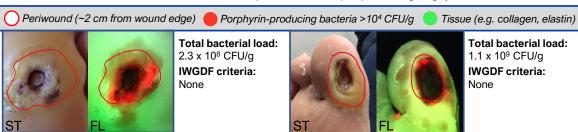
Clinician assessment

IWGDF criteria; CSS+ if at least 2 of the following: swelling, erythema, local pain or tenderness, increased warmth, purulent discharge.

Biopsy and microbial analysisQuantitative microbial analysis (CFU/g) and speciation (TOF MS).


Point-of-care fluorescence imaging

MolecuLight was used detect areas of elevated bacterial burden (most gram positive, gram negative, aerobic and aerobic pathogens) at loads >10⁴ CFU/g.

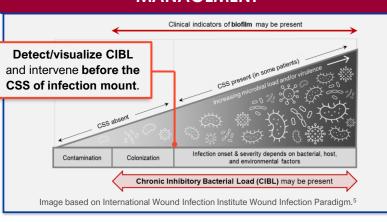

PREVALENCE AND DETECTION OF CIBL IN 138 DFUS

940% of DFUs containing bacteria had loads greater than 10⁴ CFU/g.

- 84% of DFUs had fluorescence indicating bacteria outside of the wound bed, mostly confined to a ring of callused tissue in the periwound.
- ROC curves (right) show that all five IWGDF criteria were poor predictors of bacterial loads in wounds (>10⁴ CFU/g), and this did not improve as bacterial loads increased (up to 10⁸ CFU/g).
- Fluorescence imaging boosted the sensitivity across all bacterial loads above 10⁴ CFU/g; for example, to 92.6% (p<0.0001), up from 11.1% using IGWDF criteria alone in wounds with >10⁸ CFU/α.

Receiver operator characteristic (ROC) curves. Diagonal grey dotted line denotes 'line of chance'.

Bacterial Load	IWGDF Criteria ¹					≥2	Red/cyan
	Swelling	Erythema	Pain	Warmth	Purulent discharge	Criteria (CSS+)	fluorescence
10⁴ – 10⁵ CFU/g	21.4%	0%	0%	0%	0%	0%	42.9%
10 ⁵ – 10 ⁶ CFU/g	20.0%	12.0%	0%	12.0%	0%	0%	64.0%
10 ⁶ – 10 ⁷ CFU/g	16.7%	4.2%	4.2%	0%	0%	0%	58.3%
10 ⁷ – 10 ⁸ CFU/g	20.6%	14.7%	8.8%	8.8%	2.9%	2.9%	82.4%
>108 CFU/g	11.5%	15.4%	11.5%	11.5%	7.7%	7.7%	92.3%


CHRONIC INHIBITORY BACTERIAL LOAD (CIBL)

"Chronic presence of bacterial microorganisms in a wound or its surrounding tissue at loads which can damage tissues and be inhibitory to healing, as well as requires clinical intervention, with or without presence of clinical symptoms.."

The prevalence, distribution, and pathogenic nature of bacterial burden in DFUs is grossly underappreciated. This underappreciation is likely due to both: (1) a lack of reliable methods for identifying the presence and locations of bacteria in wounds, and (2) the absence of a clinical definition for such a finding in *asymptomatic* patients.

As a result of the findings in this study, we propose new terminology, CIBL, to define the presence of bacteria at a subclinical level that is distinct from infection, but nevertheless requires clinical intervention.

IMPACT ON BACTERIAL-INFECTION MANAGEMENT

