Intro

- Ulceration or gangrenous heel with underlying osteomyelitis is known to be the most difficult to treat. ¹ Most often, this leads to primary or major amputation even if patient has adequate or palpable pedal pulses.²
- Factors that complicate the healing process for these necrotic heels are diabetes, PAD, presence of osteomyelitis in the calcaneus, offloading failure and history of previous BKA from the contralateral limb. ¹⁻²
- This case study highlighted a success of healing gangrenous heel without undergoing surgical intervention such as partial or total calcanectomy but only utilizing a complex combination of oral antibiotic, surgical debridement, advanced wound dressings, negative pressure wound therapy, and cellular tissue-based products (CTP).

Methods

- A 56 well-nourished year-old Caucasian male with PMH: type 2 DM, s/p of the right BKA, and PAD with significant inflow disease on LLE (per vascular, no options for revascularization)
- MRI revealed osteomyelitis of the lateral plantar aspect of the calcaneus.
- ABI of the LLE 0.57; Toe Pressure 49 mmHg; HbA1c: 6.9%
- **Treatments included:**
- > **Offloading**: PRAFO, wheelchair
- > 6 weeks of oral antibiotics (doxycycline),
- > advanced wound dressings (santyl, hydrofera blue)
- > in-office surgical debridement
- > negative pressure wound therapy (NPWT)
- > CTP (purified collagen matrix containing PHMB, and dehydrated chorion amnion membrane) for final wound closure.

SOME SAID TO "CHOP" BUT I SAID "NO"

Ngan Nguyen, DPM, Diplomate ABPM

University of South Carolina- School of Medicine Greenville Prisma Health Upstate Wound Healing Center and HBOT

References

1. Armstrong DG, Fisher TK. Partial Calcanectomy in High-Risk Patients With Diabetes: Use and Utility of a "Hurricane" Incisional Approach. Journal of Plastic Surgery 10: 140-151, 2010 2. Jain A, Gupta G. Total calcanectomy: Treatment for non-healing plantar ulcer with chronic osteomyelitis of the calcaneus. Journal of Clinical Orthopaedics and Trauma 11: S861-S864, 2020

3. Frykberg RG, Banks J. Management of Diabetic Foot Ulcers: A Review. Federal Practitioner 16-23, 2016

4. Frykberg RG, Zgonis T, Armstrong DG. Diabetic foot disorders: a clinical practice guideline (2006 Revision). J Foot Ankle Surg 45(5) (suppl 1): S1-S66, 2006 5. Winkler E, Waibel F. Foot Osteomyelitis Location and Rates of Primary or Secondary Major Amputations in Patients With Diabetes. American Orthopaedic Foot and Ankle Society 43(7): 957-967, 2022.

Discussion

- 3 main strategies when treating DFU: identifying the at-risk diabetic foot, treatment of present infection and prevention of reulceration.³
- With heel necrosis and osteomyelitis, soft tissue coverage, infection and reulceration are all challenging factors.⁴
- Total calcanectomy was <u>not</u> considered as there is a potential risk for revision trans-tibial amputation, iatrogenic calcaneal gait, TNJ subluxation, decreased muscle strength of the ankle; most importantly, life-long dependency of orthosis.²

Per Winkler et al.	
Location	Proportion of MA (%)
Forefoot	4.6
Midfoot	10.5
Hindfoot	21.1

Per Armstrong et al.	
Year	Mortality Rate (%)
1	40
3	65
5	>85

PZISVA

HEALTH_®

