

Long-Term Risk of Pancreatic Cancer in Patients With Prediabetes: A Systematic Review and Meta-Analysis of Prospective Studies

Praneeth Reddy Keesari, MBBS¹; Yashwitha Sai Pulakurthi, MBBS²; Vikash Kumar, MD³; Nikhila Appala, MBBS⁴; Navya Sadum, MBBS⁵; Taherunnisa Rida, BS⁶; Satya Sai Venkata
Lakshmi Arepalli, MBBS⁷; Jaswanth R. Jasti, MD⁸; Rewanth Katamreddy, MBBS⁹; Mariam Ashfaque, MBBS¹⁰; Pavana Appala¹¹; Rupak Desai, MBBS¹²

Staten Island University Hospital, ^{2,9}New York Medical College – Saint Michael's medical Center, ³The Brooklyn Hospital Center, ⁴Kasturba Medical College, ⁵Kamineni Academy of Medical Sciences and Research Centre, ⁶University of Texas at Dallas, ⁷Apollo

institute of Medical Sciences and Research, 8University of South Dakota Sanford School of Medicine, 10People University of Medical and Health Sciences, 11KMC Manipal, 12Independent Researcher

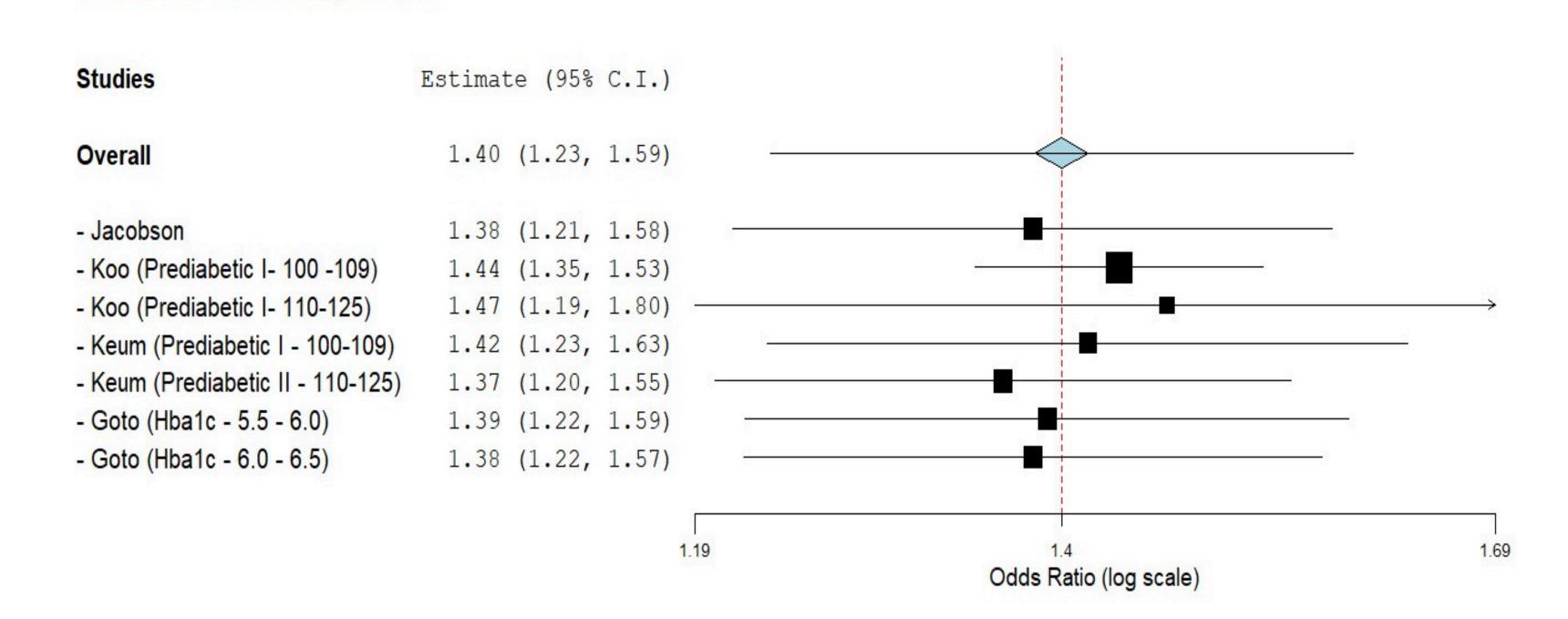
Introduction

Hyperglycemic states are known to have a bidirectional relationship with pancreatic disorders. The literature remains limited in discussing the role of prediabetic states on intermediate or long-term risk of having pancreatic cancer. Therefore, we conducted this updated meta-analysis to evaluate the risk of Pancreatic cancer among individuals with Prediabetes or impaired fasting glucose.

Methods and Materials

We systematically searched PubMed/Medline, EMBASE, Scopus, and Google Scholar to ascertain prospective studies describing pancreatic cancer in prediabetes between May 1, 2012 to May 1, 2022. Random-effects models were used to perform meta-analysis and subgroup analyses. I2 statistics was used to assess heterogeneity. Sensitivity analysis was done using the leave-one-out method.

Figure 1


a. Unadjusted OR - - Prediabetes vs Normoglycemia

Studies	Estimate	(95%	C.I.)	PC/Prediabetes	PC/Ctrl							
Jacobson 2021	1.69 (1	.03,	2.77)	30/113	81/450					-	_	
Rentsch 2020	0.39 (0	.29,	0.52)	49/15648	497/349825	-	•					
Koo (Prediabetic I- 100 -109) 2019	1.55 (1	.47,	1.63)	1875/3578442	2652/7864085				-	ł		
Koo (Prediabetic I- 110-125) 2019	2.04 (1	.91,	2.18)	1249/1814242	2652/7864085					-		
Keum (Prediabetic I - 100-109) 2017	1.34 (0	.93,	1.93)	54/204	149/697				-			
Keum (Prediabetic II - 110-125) 2017	1.92 (1	.24,	2.97)	39/115	149/697							
Goto (Hba1c - 5.5 - 6.0) 2016	1.40 (0	.77,	2.55)	34/12636	16/8314				-		4	
Goto (Hba1c - 6.0 - 6.5) 2016	1.82 (0	.88,	3.76)	13/3711	16/8314					-		
Overall (I^2=94.92 % , P< 0.01)	1.36 (1	05,	1.77)	3343/5425111	6212/16096467	7						
						0.29		0.58	1.36 Odds Ratio (log scale)		2.9	3.76

b. Adjusted OR - - Prediabetes vs Normoglycemia

Studies	Estimate (95% C.I.) Pancr	eatic Cancer/Prediabetes Pancr	eatic Cancer/Ctrl				
Jacobson 2021	1.77 (1.05, 2.98)	30/113	81/450				
Koo (Prediabetic I- 100 -109) 2019	1.22 (1.15, 1.29)	1875/3578442	2652/7864085	-			
Koo (Prediabetic I- 110-125) 2019	1.42 (1.33, 1.52)	1249/1814242	2652/7864085	-			
Keum (Prediabetic I - 100-109) 2017	1.32 (0.91, 1.91)	54/204	149/697	-			
Keum (Prediabetic II - 110-125) 2017	1.90 (1.22, 2.96)	39/115	149/697				
Goto (Hba1c - 5.5 - 6.0) 2016	1.70 (0.92, 3.14)	34/12636	16/8314		-		
Goto (Hba1c - 6.0 - 6.5) 2016	2.29 (0.99, 5.30)	13/3711	16/8314		•		-
Overall (I^2=66.13 % , P< 0.01)	1.40 (1.23, 1.59)	3294/5409463	5715/15746642				
				i			
			0.91	1.4	1.82 Odde Patio (log scale)	4.55	5.

c. Leave one out Sensitivity Analysis

Results

Five studies (1 USA, 1 UK, 1 Sweden, 1 Korea, 1 Japan) comprising 5,425,111 Prediabetics (mean age 59.3 years) and 16,096,467 normoglycemic patients with a median follow-up of 8.5 years were included in this study. A total of 3343 (0.06%) pancreatic cancer events were noted in the prediabetic group whereas 6212 (0.04%) pancreatic cancer events took place in the normoglycemic group. The unadjusted OR is 1.36 (95%CI 1.05-1.77, p 0.02) (fig 1a) and when adjusted for confounders like age, sex, etc, the overall estimated OR reported was 1.40 (1.23-1.59, p< 0.01) (fig 1b). Sensitivity analysis using the leave one out method did confirm equivalent results(fig 1c). Heterogeneity analysis for unadjusted OR had considerable heterogeneity with an overall I^2 of 94.92% with a P value < 0.01 and for adjusted OR had moderate heterogeneity with an overall I^2 of 66.13% with a p value < 0.01. Subgroup analysis by age showed that studies with older participants of mean/median ages 60 and above had higher odds of 1.83 (95%CI 1.28-2.62, p< 0.01) when compared to studies with relatively younger participants with mean/median ages < 60 years which reported odds of 1.35 (95%CI 1.18-1.55, p< 0.01). The risk of pancreatic cancer among pre diabetics was higher in studies from Japan (OR 1.89, 95%CI 1.15-3.10, p< 0.01) as compared to USA (OR 1.32; 95%CI 1.13-1.53, p< 0.01).

Discussion

This meta-analysis showed a 40% higher risk of pancreatic cancer in patients with prediabetes over a long-term median follow-up of over 8 years. A special screening protocol is warranted for pancreatic cancer screening which could lessen the disease burden including morbidity and mortality in high-risk patients.