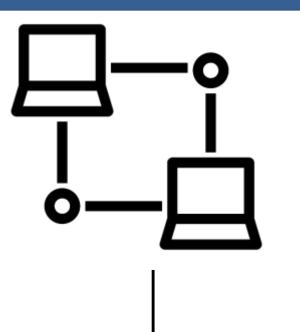
PREVALENCE AND PREDICTORS OF BARRETT'S ESOPHAGUS AFTER A NEGATIVE INDEX ENDOSCOPIC EVALUATION : AN ANALYSIS USING THE GIQUIC DATABASE


Lovekirat Dhaliwal¹, Amrit K. Kamboj², Lucas Williams³, Karan Sachdeva¹, Erin Gibbons², Ramona Lansing², Melissa Passe², Cadman L. Leggett², John B. Kisiel², Prasad G. Iyer^{2.}

Introduction

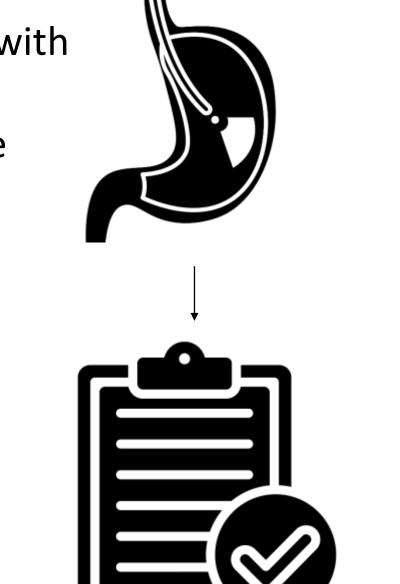
- Current guidelines recommend single screening endoscopy in patients with multiple risk factors for Barrett's esophagus (BE).
- Data suggesting a low risk of BE after a negative esophagogastroduodenoscopy (EGD) are limited by small sample size and short follow-up after initial EGD.
 There remains a possibility of missed or incident BE after a negative index EGD.
- With the advent of cost-effective, non-endoscopic BE screening tools, repeat screening may be a consideration in high-risk patients.
- We aimed to determine the prevalence and predictors of BE after a negative index evaluation, on repeat EGD in a large national endoscopic database.

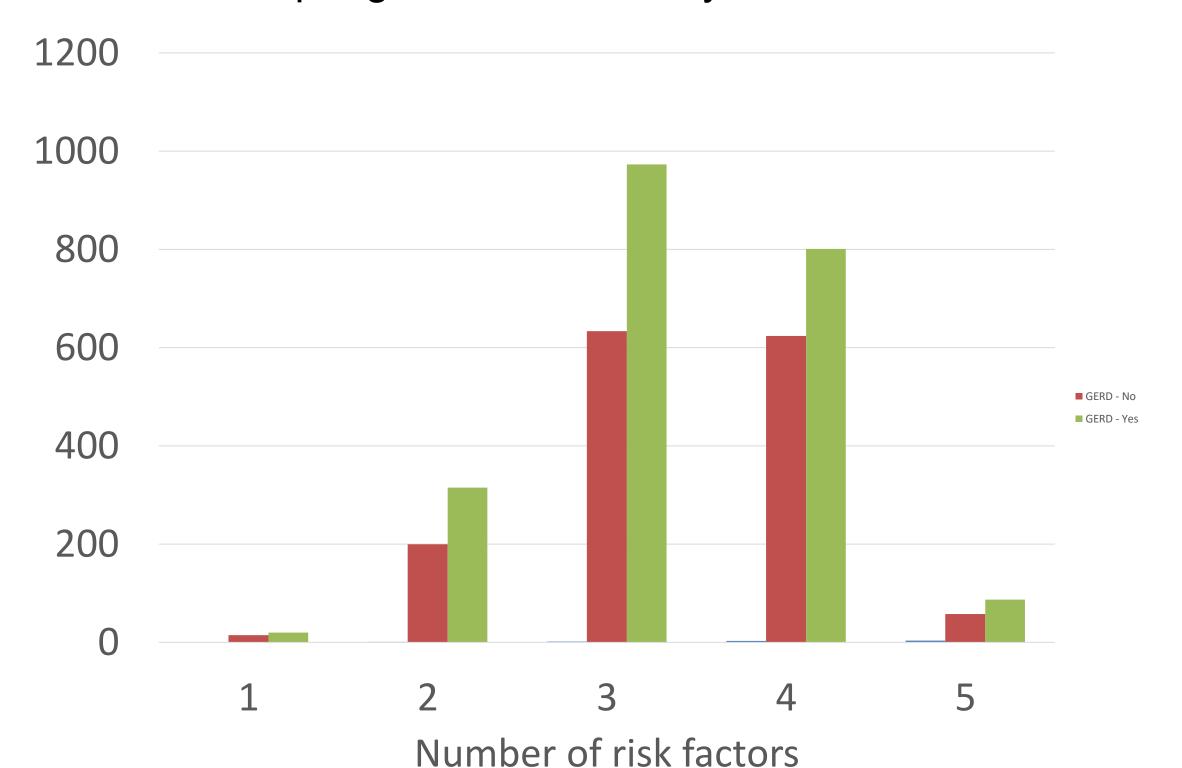
Methods and Materials

GI Quality Improvement Consortium Registry (GIQuIC), a large nationwide quality benchmarking clinical registry

We included patients who underwent at least 2 EGDs. Patients diagnosed with or with a history of BE or esophageal adenocarcinoma (EAC) at index EGD were excluded.

We calculated prevalence of BE/EAC on subsequent EGDs and assess association between predictors and outcome of BE/EAC on repeat EGD.




Table 1: Baseline characteristics of patients with and without BE/EAC on follow-up EGD after negative index EGD

TOTION-UP LOD after 1	negative index LOD			
Characteristic		No BE/EAC	BE/EAC	p-value
	N = 214,318	N = 210,591	N = 3,727	
Age (years)				<.0001
<50	47,643	47,029	614 (16.5%)	
	(22.2%)	(22.3%)	,	
50-80	151,896	148,953	2,943	
	(70.9%)	(70.7%)	(79.0%)	
>80	14,779	14,609	170 (4.6%)	
	(6.9%)	(6.9%)	4 00 4	4 0004
Male sex	83,903	81,909	1,994	<.0001
White race	(39.1%) 145,918	(38.9%) 143,211	(53.5%) 2,707	<.0001
Willie Tace	(82.2%)	(82.1%)	(89.8%)	0001
GERD symptoms	75,281	73,085	2,196	<.0001
	(35.1%)	(34.7%)	(58.9%)	
Obesity (BMI > 30)	13,804	13,421	383 (37.4%)	0.31
	(36.0%)	(35.9%)		
Time interval				<.0001
between initial				
negative EGD and subsequent EGD				
Subsequent Lab				
	104,366	102,284	2,082	
< 1 year	(48.7%)	(48.6%)	(55.9%)	
	73,034	71,922	1,112	
1 - <3 years	(34.1%)	(34.2%)	(29.8%)	
	29,387	28,954		
3 - <5 years	(13.7%)	(13.7%)	433 (11.6%)	
	7,531			
>= 5 years	(3.5%)	7,431 (3.5%)	100 (2.7%)	
High risk	73,831	71,655	2,176	<.0001
population (GERD	(34.4%)	(34.0%)	(58.4%)	
+ at least one risk				
factor)				

Results

- The prevalence of BE at index endoscopy in the GIQuIC database is 4.2%.
- A total of 346,060 patients underwent at least 1 EGD (mean number of repeat EGDs 2.45, range 2-96). Of these, 214,318 patients met our inclusion criteria (had at least two EGDs with the initial EGD being negative for BE/EAC.
- A total of 3,727 patients (1.74%) were found to have BE/EAC on repeat EGD.
- **Table 1** shows the prevalence of BE/EAC stratified by age, gender, risk factors and time interval between EGDs.
- Risk factors associated with BE/EAC on repeat endoscopy included GERD (OR: 2.93, p < 0.01), male sex (OR: 1.80, p< 0.01), White race (OR: 1.86, p< 0.01), age 50-80 years (OR: 1.65, p< 0.01).
- In patients with GERD and an additional risk factor, the prevalence of BE/EAC was higher at 3% at a mean (SD) time interval of 10.1 (24.4) months after a negative index EGD.
- The prevalence of BE/EAC increased with increasing number of risk factors (Figure 1).

Figure 1: Number of risk factors among patients diagnosed with BE / esophageal carcinoma, by GERD status

Discussion

- This is the largest study to date, examining the prevalence of BE/EAC on repeat EGD after a negative index EGD using data from GIQuIC.
- We demonstrate that rates of BE/EAC are not insignificant (when compared to the baseline rates at initial evaluation) and repeat BE screening may be considered in a subset of these patients, particularly with minimally invasive non-endoscopic tests.
- Our study highlights that in patients with two or more risk factors, the prevalence of BE was two-fold higher than the overall prevalence on repeat endoscopy.
- The prevalence of BE/EAC generally increased as the number of risk factors increased, which is consistent with BE prevalence estimates on index screening endoscopy.
- Strength of our study is that it includes data from both endoscopic findings and pathology reports to confirm a diagnosis of BE.

Conclusions

In conclusion, repeat evaluation for BE may be considered in patients with multiple risk factors a few years after negative initial evaluation. While repeat screening may have previously been considered cost prohibitive, the development of low cost, minimally invasive, nonendoscopic BE detection tools makes this a feasible possibility. Further studies are needed to confirm the prevalence of BE at prolonged intervals after negative index endoscopy before implementation of widespread repeat screening.

Contact

Lovekirat Dhaliwal
LSU Health Shreveport
Email: lovekiratdhaliwal@gmail.com

Affliations:

- 1) Department of Internal Medicine, Louisiana State University Health Shreveport, LA
- 2) Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
- 3) GI Quality Improvement Consortium, Bethesda, MD