

Outcomes of Patients Hospitalized for Inflammatory Bowel Disease With Comorbid Generalized Anxiety Disorder

Alexander J. Kaye, MD, MBA¹; Shivani J. Patel, MD¹; Sarah Meyers, DO²; Vraj P. Shah BS³; Anna G. Mathew, BA³; and Sushil Ahlawat MD^{1,4}

¹Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, ²Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, ³Rutgers New Jersey Medical School, Newark, NJ, ⁴Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ

Introduction

- Inflammatory Bowel Disease (IBD) encompasses Crohn's disease and ulcerative colitis
- Psychiatric stress, such as anxiety, has been linked to the development and exacerbation of IBD
- Anxiety is 39% more prevalent in hospitalized IBD patients compared to other hospitalized patients
- Generalized anxiety disorder (GAD) is a common form of anxiety among the U.S. population
- Currently, little data exist about the association between IBD and GAD, and the outcomes of IBD patients with comorbid GAD

Aim

 The purpose of this study is to assess the outcomes of hospitalized IBD patients with comorbid GAD

Methods

- Hospitalized IBD patients from the National Inpatient Sample database from 2014 were selected
- Diagnoses were identified with ICD-9 CM codes
- SPSS Premium Edition was used for analysis
- Patient demographics and outcomes of IBD were compared between the groups with and without GAD
- The outcomes of interest were hypotension/shock, sepsis, acute hepatic failure, acute respiratory failure, acute renal failure, myocardial infarction, acute deep vein thrombosis, ileus, inpatient mortality, colectomy, intestinal abscess, intestinal obstruction, and intestinal perforation
- Chi-square tests and independent t-tests were used to compare proportions and means respectively
- Multivariate logistic regression analysis was performed to determine if GAD is an independent predictor for the outcomes, adjusting for age, sex, race, and Charlson Comorbidity Index

Table 1: Patient Demographics and Characteristics					
Variable Variable	ent Demographic With GAD	S and Characterist Without GAD	P-value		
N = 28,173	N = 3,400	N = 24,773			
Patient age, mean (SD)	54.8 (19.2)	55.9 (21.5)	<0.001		
Sex, N (%)			<0.001		
Female	2,333 (68.8%)	11,478 (46.3%)			
Male	1,068 (31.4%)	13,293 (53.7%)			
Race, N (%)			<0.001		
White	2,742 (86.1%)	17,782 (76.7%)			
Black	177 (5.6%)	2,307 (10.0%)			
Hispanic	18 (0.6%)	1,898 (8.2%)			
Asian or Pacific Islander	14 (0.4%)	406 (1.8%)			
Native American	73 (2.3%)	112 (0.5%)			
Other	73 (2.3%)	679 (2.9%)			
Length of stay, in days (SD) Total hospital charges,	6.6 (8.0)	6.8 (10.5)	0.264		
in \$ (SD)	56,313 (94,612)	68,784 (145,836)	<0.001		
Charlson Comorbidity Index (SD)	2.45 (2.44)	2.65 (2.49)	<0.001		

Resu	lts

Table 2: Outcomes	Multivariate Regression Analys *Adjusted odds ratio	is of Outcomes 95% Confidence Interval	P-value
Hypotension/shock	0.94	0.84-1.06	0.306
Sepsis	1.33	1.17-1.50	<0.001
Acute hepatic failure	1.80	1.18-2.73	0.006
Acute respiratory failure	1.24	1.04-1.49	0.018
Acute renal failure	1.11	0.99-1.24	0.083
Myocardial infarction	1.18	0.87-1.62	0.278
Acute deep vein thrombosis	0.99	0.73-1.35	0.972
lleus	1.05	0.88-1.24	0.613
Inpatient mortality	1.87	1.50-2.31	<0.001
Colectomy	1.06	0.69-1.63	0.760
Intestinal abscess	2.35	1.20-4.61	0.013
Intestinal obstruction	1.20	0.95-1.53	0.129
Intestinal perforation	1.44	1.06-1.95	0.019

*Adjusted for age, sex, race, and the Charlson Comorbidity Index

Discussion and Conclusion

- This study indicates that in hospitalized IBD patients, GAD is a risk factor for sepsis, acute hepatic failure, acute respiratory failure, intestinal abscess, intestinal perforation, and inpatient mortality
- One possible explanation for these findings may be related to suboptimal adherence to medical therapy. 18%
 of IBD patients with comorbid psychiatric disease are partially or fully non-adherent to medical therapy
- GAD and its pharmacologic therapeutics can alter intestinal motility. Dysmotility can result in microbiome alterations. Microbiome disruption can increase the risk for IBD relapses, increasing the risk of complications
- IBD and GAD are both becoming increasingly more frequent, which will likely result in a larger number of complications among inpatients who have these comorbidities

References

- Camara, R. J., Schoepfer, A. M., Pittet, V., Begré, S., von Känel, R., & Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS) Group. (2011). Mood and nonmood components of perceived stress and exacerbation of Crohn's disease. *Inflammatory bowel diseases*, 17(11), 2358-2365.
- Tarar, Z. I., Zafar, M. U., Farooq, U., Ghous, G., Aslam, A., Inayat, F., & Ghouri, Y. A. (2022). Burden of depression and anxiety among patients with inflammatory bowel disease: results of a nationwide analysis. *International Journal of Colorectal Disease*, 37(2), 313-321.

 Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H. U. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood
- disorders in the United States. International journal of methods in psychiatric research, 21(3), 169-184.
 Cordaro M, Grigsby TJ, Howard JT, Deason RG, Haskard-Zolnierek K, Howard K: Pandemic-Specific Factors Related to Generalized Anxiety Disorder during the Initial COVID-
- 19 Protocols in the United States. Issues Ment Health Nurs. 2021, 42:747-57. 10.1080/01612840.2020.1867675.

 Kaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature reviews Gastroenterology & hepatology, 12(12), 720-727.
- Nigro, G., Angelini, G., Grosso, S. B., Caula, G., & Sategna-Guidetti, C. (2001). Psychiatric predictors of noncompliance in inflammatory bowel disease: psychiatry and compliance. *Journal of clinical gastroenterology*, 32(1), 66-68.
- Quigley, E. M. (2011). Microflora modulation of motility. *Journal of neurogastroenterology and motility*, 17(2), 140.
- Nishihara, Y., Ogino, H., Tanaka, M., Ihara, E., Fukaura, K., Nishioka, K., ... & Ogawa, Y. (2021). Mucosa-associated gut microbiota reflects clinical course of ulcerative colitis. Scientific reports, 11(1), 1-12.