Geisinger

Introduction

- Hemolytic uremic syndrome (HUS) is clinically diagnosed from the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal injury.
- So-called "typical" HUS (Shiga toxin or ST-HUS) is most often caused by Shiga toxin-producing E. coli O157:H7 infection¹.
- HUS as a complication of *Clostridioides difficile* infection (CDI) is rare, with only 11 cases reported in adults.
- We present a case of a patient presenting with the classic triad of HUS, which was found to be due to non-complement mediated typical HUS from CDI.

Case	Age	Sex	Diarrhea	Confusion	Dialvsis	Plasmapharesis	Pharmaceu
			Non				
Mogyorosi 1997	5	1Female	bloody	Yes	No	No	Oral and red
Mbonu, 2003	40	6Female	Bloody	No	Yes	Yes	Oral metror
			non				
Kalmanovich 2012	73	3 Female	bloody	no	Yes	No	IV metronid
Keshtkar-Jahromi,			Non				
2012	62	2 Female	bloody	Yes	Yes	yes	Intravenous
			non				
Alvarado 2014	29	9Female	bloody	no	No	No	Oral vancon
			non				
Alvarado 2014	52	2 Female	bloody	yes	No	yes	Oral metror
							IV metronid
Alvarado 2014	63	3 Female	bloody	yes	No	yes	eculizumab
			non				Plasmaphar
IInglis 2018	4	6Male	bloody	no	Yes	yes	metronidaz
			Non				IV metronid
Khurshid 2020	6	OFemale	bloody	No	Yes	yes	eculizumab
			Non				
Wadehra 2021	6	5 Male	bloody	No	Yes	No	Oral vancon
							IV metronid
Moulton 2021	2	1Female	Bloody	Yes	Yes	No	eculizumab

Table 1. A review of the medical literature revealed 11 previously reported cases of hemolytic uremic syndrome caused by CDI.

Biopsy-proven typical hemolytic uremic syndrome (HUS) as a rare complication of Clostridioides difficile infection

Vandan Shah, MD¹; Samarth Patel, MD¹; David L Diehl, MD^{1,2} ¹Geisinger Medical Center, ²Department of Gastroenterology

Case Presentation

- A 43-year-old female with a past medical history of non-alcoholic steatohepatitis (NASH) cirrhosis was found unconscious with a 3-day history of loose bloody bowel movements, diaphoresis, and chills.
- Initial blood pressure was 186/97 mmHg and pulse of 110. Lactate dehydrogenase was 1223 U/L, peripheral blood smear.
- ADAMTS13 protease level came back normal at 0.95 IU/mL and inhibitor level undetectable at <0.4 BEU, negative for Shiga toxin but positive for *C.diff*. The patient was started on oral vancomycin.
- After complement-mediated HUS serum and plasma panel labs and genetic susceptibility panel labs returned negative for complement-mediated HUS, the leading diagnosis was so-called "typical" HUS.
- vancomycin treatment, the patient's symptoms completely resolved.

tical Intervention

- ctal vancomycin
- nidazole
- lazole and steroids
- metronidazole and steroids
- nycin and steroids
- idazole dazole, Oral vancomycin,
- resis, Oral vancomycin, IV zole, eculuzimab dazole, Oral vancomycin,
- nycin, steroids dazole, oral vancomycin and surgery

Figure 1. Kidney biopsy showed: (A) fibrin thrombi and neutrophils within the capillary loops of the glomeruli. RBC fragmentation is evident within capillary loops and the mesangium. (B) Mesangiolysis and endothelial cell swelling.

creatinine 6.5 mg/dL, haptoglobin <10 mg/dL, platelets 98 K/uL, and there were schistocytes on

suggesting the diagnosis of HUS. The patient's complement levels were normal (C3=119 mg/dL, C4=26 mg/dL). Renal biopsy showed thrombotic microangiopathy without fibrosis. Stool pathogen panel was

• Thrombocytopenia and anemia improved dramatically after only a few sessions of plasmapheresis. After

Discussion

- Our patient presented with the classic triad of thrombocytopenia, hemolytic anemia and renal failure with a renal biopsy showing thrombotic microangiopathy, confirming the diagnosis of HUS.
- A unique aspect of the case was typical HUS in an adult that was caused by an organism not commonly associated with HUS.
- It is unknown how CDI can trigger HUS in the absence of Shiga toxin. One theory is that like Shiga toxin, the toxins A and B of *C.diff* can induce apoptosis of the colonic cell membrane and release cytokines into circulation inducing a proinflammatory and hypercoagulable state ^{1,3,4}.

Conclusion

- Our case was the only one to confirm the diagnosis of HUS by renal biopsy with further classification of "typical" HUS with negative advanced complement and genetic studies
- C.diff is a rare cause of HUS. Proper treatment to complete resolution without lead can recurrence.

References

1.	Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Neph. 2005;16:1035–
	50.
2.	Constantinescu AR, Bitzan M, Weiss LS, et al. Non-enteropathic hemolytic uremic
	syndrome: Causes and short-term course. Am J of Kidney Dis. 2004:43:976–82.

- Czepiel J, Dróżdż M, Pituch H, et al. Clostridium difficile infection: Review. Eur J of Clin Microbiol & Inf Dis. 2019;38:1211-21.
- Mbonu CC, Davison DL, El-Jazzar KM, et al. Clostridium difficile colitis associated with hemolytic-uremic syndrome. Am J Kidney Dis. 2003;41(5) e14-1.