

# Therapeutic Effect of Granulocyte Colony-Stimulating Factor Therapy In Cirrhosis: A Meta-Analysis of Randomized Controlled Trials

THE CAL CENTRES

Javaid Zafar<sup>1</sup>, Syed Sarmad Javaid<sup>1</sup>, Ahmed Mustafa Rashid<sup>1</sup>, Ahmed Kamal Siddiqi<sup>1</sup>, Adnan Zafar<sup>1</sup>, Arsalan Zafar Iqbal<sup>1,</sup> Yousaf Zafar<sup>1</sup>

University of Mississippi Medical Center, Department of Medicine

## Background

- Decompensated cirrhosis is an advanced stage of cirrhosis in which liver scarring becomes so extensive that the liver is unable to function properly, leading to complications such as refractory ascites, recurrent infections, and hepatic encephalopathy.
- Currently, liver transplantation is the only definitive treatment, but it has a number of disadvantages, including high cost, restricted donor pool, and long-term immunosuppression.
- As a result, granulocyte colony stimulating factor (G-CSF) has emerged as an alternative therapy. However, its clinical efficacy is still debatable, so the aim of this meta-analysis was to determine the efficacy of G-CSF in patients with decompensated and compensated cirrhosis.

#### Figure 1: Survival rate in patients with compensated cirrhosis and decompensated cirrhosis

|                                        | Experim      | ental   | Contr      | ol      |                    | Risk Ratio          | Risk Ratio                                           |
|----------------------------------------|--------------|---------|------------|---------|--------------------|---------------------|------------------------------------------------------|
| Study or Subgroup                      | Events       | Total   | Events     | Total   | Weight             | M-H, Random, 95% CI | M-H, Random, 95% Cl                                  |
| De et al.2020                          | 34           | 50      | 18         | 50      | 10.6%              | 1.89 [1.25, 2.86]   |                                                      |
| Kedarisetty et al. 2015                | 20           | 29      | 7          | 26      | 6.0%               | 2.56 [1.30, 5.05]   | <del></del>                                          |
| Newsome et al. 2018                    | 27           | 27      | 25         | 27      | 18.4%              | 1.08 [0.95, 1.22]   | •                                                    |
| Philips et al. 2019                    | 12           | 48      | 13         | 24      | 6.9%               | 0.46 [0.25, 0.85]   |                                                      |
| Prajapati et al. 2017                  | 100          | 126     | 82         | 127     | 17.7%              | 1.23 [1.05, 1.44]   | -                                                    |
| Venkitaraman et al. 2020               | 30           | 35      | 23         | 35      | 14.4%              | 1.30 [0.99, 1.72]   | -                                                    |
| venkitaraman et al. 2022               | 29           | 33      | 22         | 33      | 14.5%              | 1.32 [1.00, 1.73]   | -                                                    |
| Verma et al. 2018                      | 20           | 21      | 12         | 21      | 11.4%              | 1.67 [1.14, 2.44]   | -                                                    |
| Total (95% CI)                         |              | 369     |            | 343     | 100.0%             | 1.29 [1.06, 1.58]   | •                                                    |
| Total events                           | 272          |         | 202        |         |                    |                     |                                                      |
| Heterogeneity: Tau <sup>2</sup> = 0.05 | ; Chi² = 28. | 09, df= | 7 (P = 0.0 | 0002);1 | <sup>2</sup> = 75% |                     | 0.04 0.4 4 4.0 4.00                                  |
| Test for overall effect: Z = 2         | .55 (P = 0.0 | 01)     |            |         |                    |                     | 0.01 0.1 1 10 100 Favours [G-CSFI] Favours [control] |

#### Methods

- MEDLINE and SCOPUS were queried from inception till June 2022 for randomized controlled trials (RCTs), without any restriction.
- RCTs evaluating effects of G-CSF on survival rates and occurrence of infection in patients with Cirrhosis were incorporated.
- The results were reported using a random-effects metaanalysis and the Mantel-Haenszel risk ratio (RR). The Subgroup analysis was done to investigate the influence of study-level factors such as study setting, population and etiology on the outcomes of interest.

Figure 2: Survival rate in patients with decompensated cirrhosis

|                                        | Experim      | ental   | Contr      | ol       |        | Risk Ratio          | Risk Ratio                                       |
|----------------------------------------|--------------|---------|------------|----------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                      | Events       | Total   | Events     | Total    | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI                              |
| De et al.2020                          | 34           | 50      | 18         | 50       | 13.3%  | 1.89 [1.25, 2.86]   | -                                                |
| Kedarisetty et al. 2015                | 20           | 29      | 7          | 26       | 7.8%   | 2.56 [1.30, 5.05]   |                                                  |
| Philips et al. 2019                    | 12           | 48      | 13         | 24       | 8.9%   | 0.46 [0.25, 0.85]   | <del></del>                                      |
| Prajapati et al. 2017                  | 100          | 126     | 82         | 127      | 20.9%  | 1.23 [1.05, 1.44]   | •                                                |
| Venkitaraman et al. 2020               | 30           | 35      | 23         | 35       | 17.5%  | 1.30 [0.99, 1.72]   | -                                                |
| venkitaraman et al. 2022               | 29           | 33      | 22         | 33       | 17.5%  | 1.32 [1.00, 1.73]   | -                                                |
| Verma et al. 2018                      | 20           | 21      | 12         | 21       | 14.2%  | 1.67 [1.14, 2.44]   |                                                  |
| Total (95% CI)                         |              | 342     |            | 316      | 100.0% | 1.35 [1.07, 1.70]   | •                                                |
| Total events                           | 245          |         | 177        |          |        |                     |                                                  |
| Heterogeneity: Tau <sup>2</sup> = 0.06 | ; Chi² = 20. | 07, df= | 6 (P = 0.0 | 003); l² | = 70%  | Ļ                   | 04 04 4 40 4                                     |
| Test for overall effect: $Z = 2$       | .53 (P = 0.0 | 01)     |            |          |        | U                   | .01 0.1 1 10 1 Favours [G-CSF] Favours [control] |

#### Results

- Eight studies (n = 8) were included in our metaanalysis. The total number of participants in our study was 712, and the median study duration was 12 months. Our pooled analysis demonstrates that G-CSF treatment did not improve survival rates (RR 1.29; 95% CI 1.06 to 1.58; p = 0.01; **Figure 1**) in patients with compensated cirrhosis and decompensated cirrhosis.
- In our subgroup analysis, G-CSF was also linked to lower survival rates among people with decompensated cirrhosis (RR 1.35; 95% CI 1.07 to 1.70; p = 0.01; Figure 2).

### CONCLUSIONS

 Our findings indicate that G-CSF therapy is not beneficial in improving survival rates and does reducing the risk of infection in patients with Cirrhosis