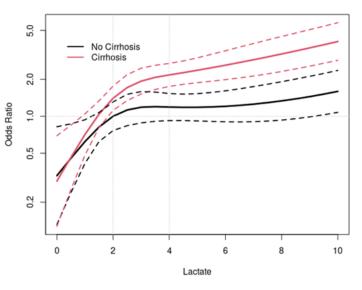


Serum Lactate Thresholds in the Diagnosis of Septic Shock in Patients with Cirrhosis: Validation of the Sepsis-3 Guidelines

Thomas Smith, M.D.¹, Chansong Choi, M.D.¹, Puru Rattan, M.D.¹, Laura Piccolo Serafim, M.D.¹, Alice Gallo De Moraes, M.D.², Douglas A Simonetto, M.D.¹ ¹ Division of Gastroenterology & Hepatology, ² Division of Pulmonary & Critical Care Medicine

BACKGROUND

The 2016 Sepsis-3 guidelines adjusted the septic shock definition and criteria to better represent known pathophysiology and patient outcomes. One significant change was the lowering of serum lactate cutoff (2 mmol/L) to include patients with higher risk-adjusted hospital mortality¹. However, this increased hospital mortality has not been investigated in patients with known derangements in lactate metabolism and hemodynamics such as those with cirrhosis².


METHODS

Retrospective cohort study of patients admitted to a Mayo Health System ICU for treatment of septic shock between 2006 and 2021 identified using a validated ICU Datamart³. Patients with documented infection source and who received vasopressors to maintain mean arterial pressure (MAP) greater than 65 mmHg were included (N=1,609). Patients with cirrhosis documented on imaging and ICD codes (N=856) were compared to patients without cirrhosis (N=753). Subgroups were created based on ICU-admission lactate levels, and in-hospital mortality was compared.

RESULTS

For cirrhosis and non-cirrhosis groups, ICU admission lactates between 2-4 mmol/L were associated with significantly increased in-hospital mortality. In a logistic regression model adjusting for age and gender, the interaction between presence of cirrhosis and lactate>4 mmol/L on inhospital mortality was not statistically significant. Continuous variable analysis was performed in both groups, demonstrating a relative plateauing of mortality risk after admission lactates increase past 2 mmol/L.

FIGURE 1: In-Hospital Mortality Odds Ratio by ICU Admission Lactate

Plot of in-hospital mortality Odds Ratio by ICU admission lactate for both cirrhosis and non-cirrhosis groups.

TABLE 1: Group Comparison No Cirrhosis

		lo nosis	Cirrhosis (N=856)	Adj. P value				
		753)	(14-050)	value				
Age, y	•			0.010				
Median (Q1 Q3)		(52.8, .5)	60.2 (51.4, 67.8)					
Mean (SD)	61.1	(14.7)	59.4 (13.2)					
Gender				0.823				
Female		39.0%)	330 (38.6%)					
Male	459 (6	61.0%)	526 (61.4%)					
Any Positive Culture during ICU)			0.328				
No	158 (2	21.0%)	197 (23.0%)					
Yes	595 (7	79.0%)	659 (77.0%)					
Pulmonary infiltrates				0.759				
No	310 (4	11.2%)	347 (40.5%)					
Yes	443 (5	58.8%)	509 (59.5%)					
TABLE 2: Non-Cirrhosis Group Outcomes								
	: =2 בו=280)	2-4 (n=213	> 4 3) (n=260)	Adj. P value				
Hospital Death				0.002				
	32 32.9%)	162 (76.1%	182 %) (70.0%)					
Yes 4	8	51	78					

(30.0%)

(23.9%)

(17.1%)

 In the cirrhosis group, admission ICU lactate 2-4 mmol/L had significantly higher risk of in-hospital mortality compared to <=2 (p=0.041).

 In the non-cirrhosis group, ICU admission lactate 2-4 mmol/L had near-significant increase in risk of in hospital mortality compared to <=2 (p=0.062).

 Interaction test was performed between cirrhosis and non-cirrhosis groups and was found to be insignificant, allowing us to combine both groups to determine overall effect of lactate 2-4 mmol/L on in-hospital mortality, which was statistically significant (p=0.003).

 Despite suggestive difference in mortality between the lactate >4 mmol/L subgroups (non-cirrhosis 30.0%, cirrhosis 47.6%), after adjusting for age and gender there was no significant interaction between presence of cirrhosis and lactate >4 mmol/L on in-hospital mortality.

TABLE 3. On mosis of oup outcomes							
Lactate (mmol/L)	<=2 (n=287)	2-4 (n=302)	>4 (n=267)	Adj. P value			
Hospital Death				<0.001			
No	224 (78.0%)	213 (70.5%)	140 (52.4%)				
Yes	63 (22.0%)	89 (29.5%)	127 (47.6%)				

TABLE 3: Cirrhosis Group Outcomes

CONCLUSION

These findings support the ongoing use of lactate cutoff > 2 mmol/L in the diagnosis of septic shock in patients with cirrhosis.

REFERENCES

- Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287. PMID: 26903338; PMCID: PMC4968574.
- Simonetto DA, Piccolo Serafim L, Gallo de Moraes A, Gajic O, Kamath PS. Management of Sepsis in Patients With Cirrhosis: Current Evidence and Practical Approach. Hepatology. 2019 Jul;70(1):418-428. doi: 10.1002/hep.30412. PMID: 30516866.
- Herasevich V, Pickering BW, Dong Y, Peters SG, Gajic O. Informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness. Mayo Clin Proc. 2010 Mar;85(3):247-54. doi: 10.4065/mcp.2009.0479. PMID: 20194152; PMCID: PMC2843116.