Associations of Dietary Fiber and Fat Intake with Barrett's Esophagus and Stages of Progression to Esophageal Adenocarcinoma

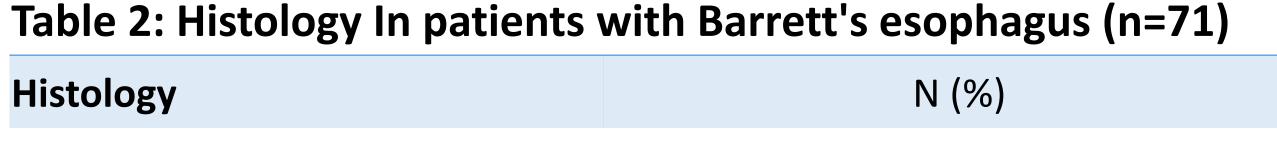
Pranav Gwalani, Aarti Kumar, Charles J Lightdale¹, Gary W Falk², Gregory G Ginsberg², Prasad G Iyer³, Kenneth K Wang³, Julian A Abrams¹

¹Department of Medicine, Columbia University Irving Medical Center; ²Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine; ³ Division of Gastroenterology, and Hepatology, Mayo Clinic Rochester

Background

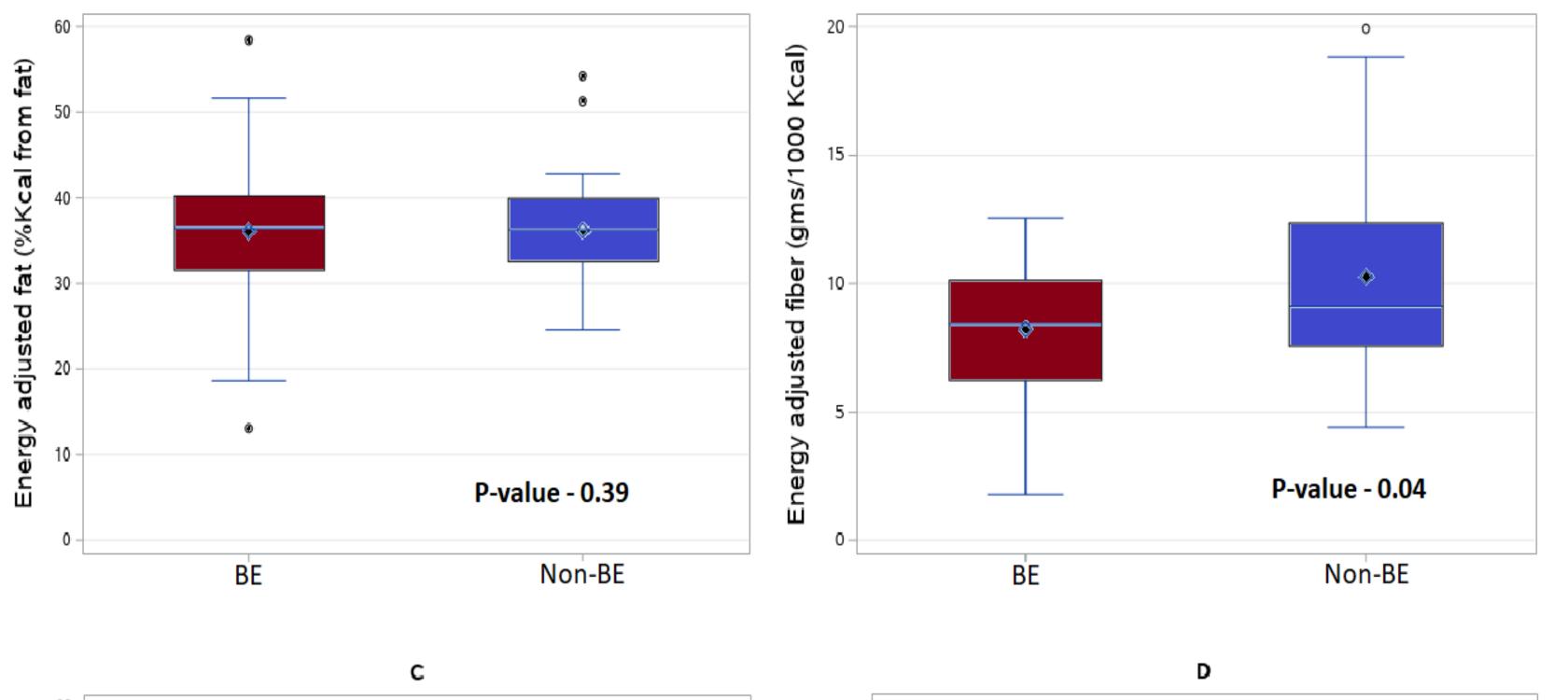
- The incidence of esophageal adenocarcinoma (EAC) has increased dramatically over the past half century. Changes in dietary patterns over this time may partially account for this trend.
- Prior studies have found inverse associations between fiber intake and both Barrett's esophagus (BE) and EAC, whereas studies of fat intake have reported increased risk or no.
- Little is known as to whether fiber or fat intake contribute to neoplastic progression in BE patients.
- In this study we aim to assess:
 - Association of dietary fat and fiber intake with BE and EAC.
 - Distribution of dietary fat and fiber with progression from BE to EAC

Methods and Materials


- Multi-center case-control study of patients with and without BE (without and with dysplasia or EAC)
- Demographic, anthropometric, and clinical data collected
- BE subjects categorized by worst degree of histology ever.
- Dietary intake captured using NCI DHQII, a validated
 12-month food frequency questionnaire
 - Assessed total energy (kcal/d), energy-adjusted fat (%kcal) and fiber intake (grams/1000 kcal)
- Groups compared using Fisher's exact test for categorical variables and Wilcoxon ranks-sum test for continuous variables
- Multivariable logistic regression analyses performed to assess associations of energy adjusted fat and fiber intake with BE and with advanced neoplasia (high grade dysplasia or EAC).
 - Model 1) fat and fiber intake
 - Model 2) Model 1 and EAC risk factors (age, sex, BMI, smoking history, family history)
 - Model 3) Model 2 and aspirin and statin use
 - Model 4) reduced parsimonious model (final model: age, sex, family history).

Results

We enrolled 162 subjects; 108 subjects (37 non-BE, 71 BE; 21 with advanced neoplasia) completed the questionnaire and were analyzed.


Table 1. Characteristics of the study participants (n=108). Shown are n (%) or median (IQR).

	Entire Sample (N=108)	Barrett's Esophagus (n=71)	Controls (n=37)	p-Value
Age	67 (57-76)	73 (63-77)	55 (41-64)	<0.001
Sex, male	70/108 (65 %)	54/71 (76 %)	16/37 (43 %)	0.001
BMI	30 (26- 34)	30 (27- 33)	28 (25- 35)	0.69
Total Energy Intake (Kcal)	1670 (1248- 2035)	1634 (1137- 2006)	1714 (1351- 2281)	0.24
White race	106/108 (98 %)	70/71 (99 %)	36/37 (97 %)	0.58
GERD	87/108 (81 %)	65/71 (92 %)	22/37 (59 %)	<0.001
PPIs	88/108 (81 %)	71/71 (100 %)	17/37 (46 %)	<0.001
Aspirin	30/108 (28 %)	26/71 (37 %)	4/37 (11 %)	0.007
Statins	48/108 (44 %)	38/71 (54 %)	10/37 (27 %)	0.001
Family hx BE/EAC	22/108 (20 %)	18/71 (25 %)	4/37 (11 %)	0.13
Ever smoker	56/108 (52 %)	46/71 (65 %)	10/37 (27 %)	0.0002

No dysplasia 37 (52 %)
Indefinite 2 (3 %)
LGD 8 (11 %)
HGD 15 (21 %)
EAC 6 (8 %)

Note: Missing pathology reports from 4 participants. *LGD- Low grade dysplasia, ***HGD- High Grade dysplasia, *** EAC- Esophageal Adenocarcinoma.

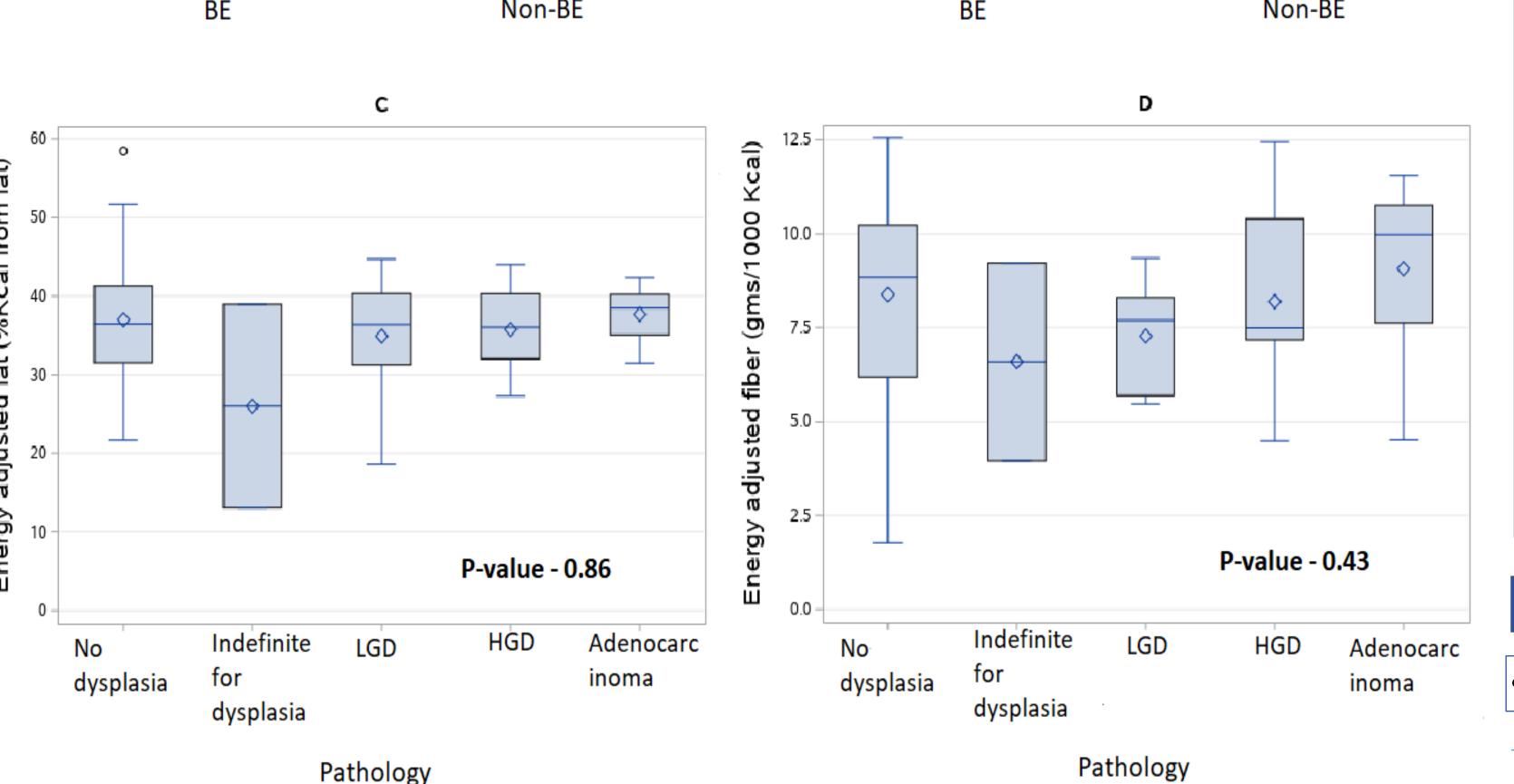


Figure 1. Comparisons of energy-adjusted intake of A) fat and B) fiber between BE and non-BE subjects.

Comparisons of energy-adjusted intake of C) fat and D) fiber across stages of progression to EAC.

Conclusions

- Increased dietary fiber intake was associated with decreased odds of BE.
- There was no association between fiber intake and stages of progression to EAC.
- There was no association between fat intake and BE or stages of progression to EAC
- The study sample size may have resulted in limited power to detect smaller but clinically meaningful associations between diet and progression from BE to EAC.
- Future larger studies are warranted to elucidate the mechanisms by which fiber may protect against the development of BE.

Disclosures

No conflicts of interests to report.

Table 3. Multivariable logistic regression models for associations between energy-adjusted and fiber intake with BE (vs. no BE) and with advanced neoplasia (HGD/EAC vs. ND/IND/LGD). (ORs per unit increase)

		Model 1	Model 2	Model 3	Model 4
BE	Fat	1.01 (0.95- 1.08)	1.03 (0.95- 1.08)	1.03 (0.94- 1.11)	1.03 (0.95- 1.11)
	Fiber	0.81 (0.70- 0.93)	0.82 90.67- 0.99)	0.82 (0.67-1.00)	0.80 (0.66- 0.97)
Advanced neoplasia	Fat	1.00 (0.93- 1.08	1.00 (0.92- 1.09)	1.02 (0.93- 1.12)	1.01 (0.98- 1.09)
	Fiber	0.94 (0.75- 1.18)	0.85 (0.65- 1.1)	0.87 (0.65- 1.16)	0.96 (0.75- 1.24)