

Yashwitha Sai Pulakurthi, MBBS¹; Praneeth Reddy Keesari, MBBS²; Jnana Pramod Valluri, MBBS³; Manasa Ginjupalli, MBBS⁴; Rishi Devaraja Vattikuti, MBBS⁵; Sreeram Pannala, MBBS⁶; Nikhilendhar Nag Mopuru, MBBS⁷; Sahas Reddy Jitta, MBBS⁸; Adhvithi Pingili, MBBS⁹; Ummul Asfeen, DO¹⁰; Rupak Desai, MBBS¹¹ ^{1,10}New York Medical College - Saint Michael's medical center, ²Staten Island University Hospital, ^{3,5,6,7}Kamineni Academy of Medical Sciences and Research Centre, ^{4,8}Osmania Medical College, ⁹Medstar health, ¹¹Independent researcher

Introduction

Cannabis use has been explored for its potential symptom relief and improvement in quality of life of inflammatory bowel disease (IBD) patients without any clearly proven benefits yet. Data outlining the burden of cannabis dependence and its impact on overall outcomes of IBD flare-up emergent admissions are limited.

Methods and Materials

We queried the National Inpatient Sample (2019) using the ICD-10/CCS codes for IBD flareup admissions and CUD. The IBD flareup was defined as IBD patients admitted nonelectively or undergoing an emergency room characteristics, Baseline treatment. comorbidities and in hospital outcomes [MACCE: all-cause mortality, acute myocardial infarction (MI), cardiac arrest and stroke], intestinal obstruction, colorectal cancer, colectomy, acute kidney injury[AKI], and sepsis) were compared between CUD and non-CUD cohort among IBD flareup admissions. Multivariable regression analyses were performed adjusting for demographics, hospital-level characteristics and relevant comorbidities.

Burden and Impact of Cannabis Use Disorder on IBD Flare-Up/Emergent Admissions: A National Population-Based Analysis

		Total Admice	sions with	
Variable				Pvalue
		NOCOD	COD	
Age (years) at admission	Median [IQR]	57 (39-71)	37 (28-48)	< 0.001
Sex	Male	117680 (43.2%)	4965 (57.6%)	< 0.01
	Female	154610 (56.8%)	3660 (42.4%)	10.01
Race	White	209740 (78.5%)	5535 (65.2%)	- < 0.01
	Black	30540 (11.45%)	2030 (23.9%)	-
	Asian or Pacific Islandor	16490 (6.2%)	620 (7.3%)	-
	Nativo Amorican	080 (0.4%)	20 (0.2%)	-
	Othors	5860 (2.2%)	240 (0.5%)	-
Aedian household income national	0_25th	67385 (25.1%)	240 (2.8%)	< 0.01
quartile for patient ZIP Code	26-50th	67740 (25.2%)	22005 (34.270)	
	51-75th	69805 (26%)	1970 (23.4%)	-
	76-100th	63365 (23.6%)	1280 (15 2%)	-
Primary expected paver	Medicare	123640 (45.4%)	1675 (19 5%)	< 0.01
Frinary expected payer	Medicaid	38775 (14,3%)	3350 (38,9%)	
	Private incl HMO	90865 (33.4%)	2370 (27.5%)	-
	Self-pav	10390 (3.8%)	850 (9.9%)	
	No charges	960 (0.4%)	95 (1.1%)	
	Others	7420 (2.7%)	270 (3.1%)	
elective versus non-elective admission	Non elective	270510 (99.4%)	8590 (99.6%)	0.05
	Elective	1765 (0.6%)	35 (0.4%)	
Region of hospital	Northeast	58565 (21.5%)	1480 (17.2%)	< 0.001
	Mid-West	65785 (24.2%)	2095 (24.3%)	
	South	100925 (37.1%)	3230 (37.4%)	-
	West	47025 (17.3%)	1820 (21.1%)	1
Location/teaching status of hospital	Rural	20060 (7.4%)	380 (4.4%)	< 0.001
	Urban Non-Teaching	46965 (17.2%)	1420 (16.5%)	
	Urban Teaching	205275 (75.4%)	6825 (79.1%)	
COMORBIDITIES			·	
lypertension, complicated		47915 (17.6%)	510 (5.9%)	< 0.001
lypertension, uncomplicated		78475 (28.8%)	1750 (20.3%)	< 0.001
Diabetes with chronic complications		33750 (12.4%)	545 (6.3%)	< 0.001
Diabetes without chronic		20240 (7.4%)	255 (3.0%)	< 0.001
omplications				
lyperlipidemia		72720 (26.7%)	885 (10.3%)	< 0.001
Dbesity		36030 (13.2%)	790 (9.2%)	< 0.001
eripheral vascular disease		16045 (5.9%)	265 (2.1%)	< 0.001
Prior MI		11700 (4 3%)	215 (2.5%)	< 0.001
Drug abuse		12050 (4.4%)	4040 (46 8%)	< 0.001
Tobacco Use Disorder		46285 (17 0%)	4135 (47.9%)	< 0.001
Thronic pulmonary disease		58130 (21 3%)	1650 (19.1%)	< 0.001
PriorTIA/Stroke		13780 (5.1%)	225 (2.6%)	< 0.001
Prior VTE		21605 (7.9%)	450 (5.2%)	< 0.001
Disposition of patient,	Routine	184890 (67.9%)	7110 (82.5%)	< 0.001
ransfer Other: Includes Skilled	Transfers to short term	6090 (2.2%)	95 (1.1%)	
Nursing Facility (SNF), Intermediate	hospital		-	
are Facility (ICF), Another Type of	Transfer other	33780 (12.4%)	415 (4.8%)]
Facility	Home Health Care	37290 (13.7%)	500 (5.8%)	-
ength of stay (days)	Median [IQR]	4 (2-6)	4 (2-6)	< 0.001
otal charges (USD)	Median [IQR]	32901	30936	< 0.001
Dutcome	Adjusted Odds Ratio	95% CI		P value
		LL	UL	
ЛАССЕ	1.01	0.74	1.39	0.943
ntestinal obstruction	0.91	0.72	1.15	0.432
Colorectal Cancer	1.04	0.50	2.17	0.918
Colectomy	0.88	0.63	1.22	0.437
Acute Kidney Injury	0.90	0.76	1.08	0.262
		017 0		

Multivariate regression models were adjusted for: Age, Sex, Race, Median household income quartile, payer status, type of admission hospital bed size, location, teaching status, hypertension, diabetes, dyslipidemia, obesity, PVD, Prior MI, Prior PCI, Prior CABG, drug abuse, smoking, Prior TIA/Stroke, Prior VTE

A total of 280925 IBD flareup admissions were identified in our study, of which 8625 (3.1%) had a reported CUD. The CUD cohort [median age was 37(IQR 28-48)] often consisted of male, white, patients belonging to the lowest median household income quartile (34.2%) and Medicaid enrollees (38.9%) of IBD flare-up admissions. The CUD cohort had a lower rate of cardiovascular comorbidities including hypertension, hyperlipidemia, diabetes, obesity, peripheral vascular disease and pulmonary comorbidities except higher rate of tobacco use disorder and drug abuse vs. non-CUD cohort. A multivariate analysis after adjusting for all potential covariates showed lower odds of sepsis with an OR of 0.61 (0.39-0.94, p < 0.024). However, MACCE and other outcomes were comparable between both groups without any significant difference (p< 0.05). Majority of IBD flareup hospitalizations with CUD had a routine disposition with a median hospital stay of 4 days and costs upto 30,936 USD (IQR 18168-58119) vs 32901 USD (IQR 18977-61686) in the non-CUD cohort (table 1).

Our study showed a lower risk of sepsis with cannabis use in IBD flareup admissions. This paves the way for further conducting observational studies and clinical trials in order to explore potential role/impact of medicinal/recreational use of cannabis in IBD flare-ups or emergent hospitalizations.

Results

Discussion