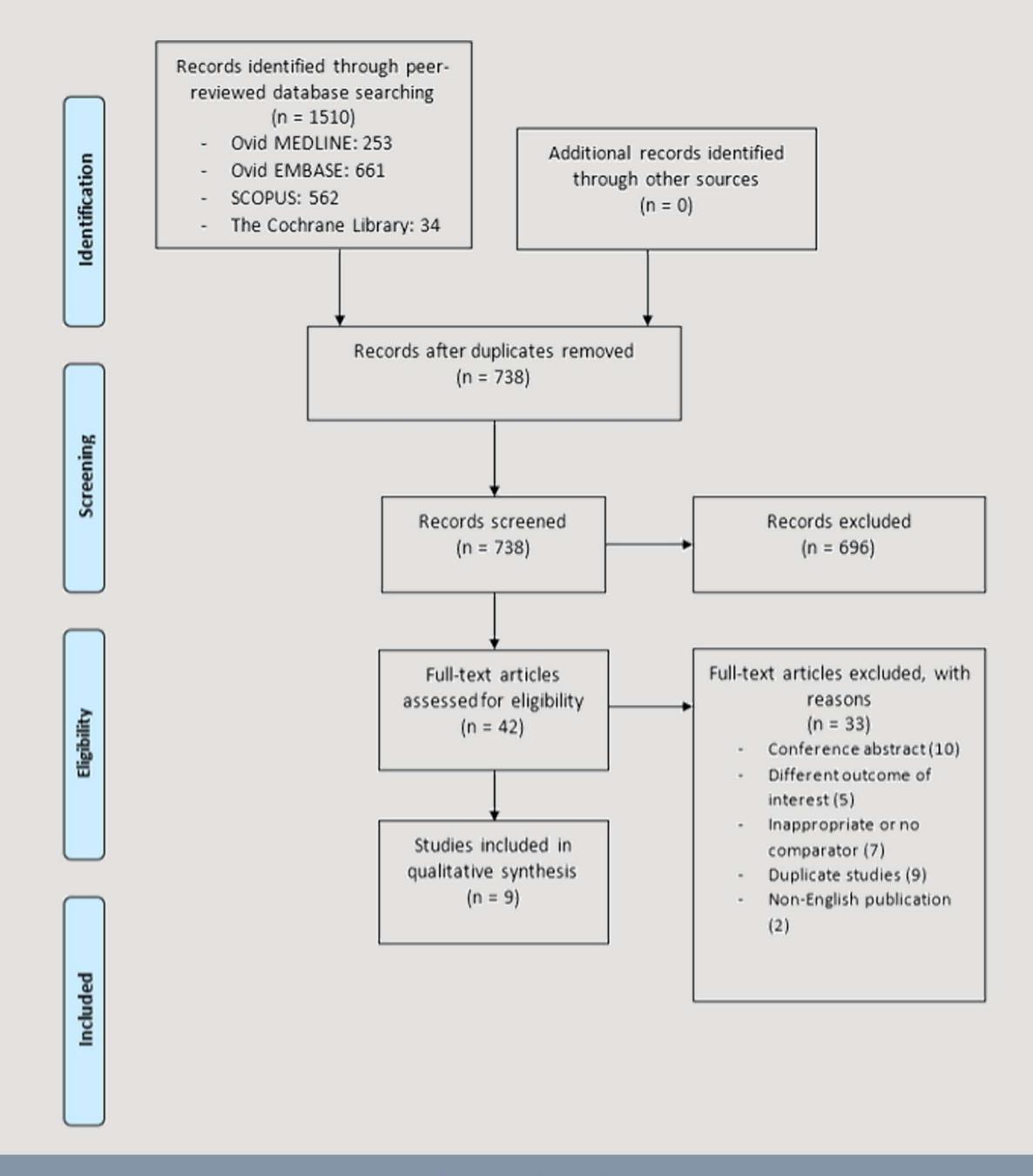


FACULTY OF


MEDICINE

INTRODUCTION

- Traditional cardiovascular risk factors are already wellestablished; however, the human gut microbiota has been increasingly suggested to be associated with the occurrence of heart failure (HF)
- The "gut-heart axis" describes the inter-connection between dysbiosis of the gut microbiome and the occurrence of cardiovascular diseases, including HF
- Previous studies suggested notable differences in gut microbiota composition of HF patients compared to the average population

Aim: To summarize available knowledge on gut microbiota composition in HF and define the baseline gut microbiota characteristics observed in HF patients

A systematic review of the gut microbiota profile in patients with heart failure

Daniel Martin Simadibrata MD MRes^{1,2,5}, Salwa Auliani MD BMedSc(Hons)^{1,4}, Putu Ayu Widyastuti MD BMedSc(Hons)^{1,4}, Alya Darin Wijaya MD^{1,4}. Hilman Zulkifli Amin MD PhD^{1,3}, Hary Sakti Muliawan MD PhD⁴, Prof Bambang Budi Siswanto MD PhD^{4\$}, Prof Marcellus Simadibrata MD PhD^{5\$}

^{\$}Senior authors

¹Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia ²Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom

³Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan

⁴Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia ⁵Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia – Ciptomangunkusumo Hospital, Jakarta, Indonesia

First author	Country	Study Period	Case / Control	N	Age	Male (%)	HT (%)	DM (%)	NYHA N (%)	Abx Status	Sequenci ng method	NUS	
Kamo (2017)	Japan	Apr 14 – Mar 16	HF-Y (0% HFrEF)	12	47±3	11 (92)	1 (8)	4 (33)	I: 0 (0) II: 3 (25) III: 7 (58) IV: 2 (17)	R	16S rRNA (V1-V2)	6	
			HF-O (40% HFrEF)	10	74±3*	7 (70)	6 (60)	3 (30)	I: 0 (0) II: 6 (60) III: 4 (40) IV: 0 (0)	R			
			HC	12	41±2*	9 (75)	0 (0)	0 (0)	N/A	NR			
Luedde (2017)	Germany	NR	HFrEF	20	65±3	11 (55)	14 (70)	7 (35)	I: 1 (5) II: 4 (20) III: 6 (30) IV: 9 (45)	R	16S rRNA (V1-V2)	8	
			HC	20	65±3	11 (55)	8 (40)	3 (15)	N/A	NR			
Cui (2018)	China	NR	HFrEF	53	58±13	44 (83)	30 (57)*	15 (28) *	I: 0 (0) II: 3 (6) III: 27 (51) IV: 23 (43)	R	Metagen omic Sequenci ng	6	
			HC	41	54±6	32 (78)	0 (0)*	2 (5)#	N/A	R			
Katsimich as (2018)	Japan	Oct 15 - Apr 17	HFrEF	28	51±10 *	21 (75)	NR	NR	III-IV: 17 (61)	R	16S rRNA (V1-V2)	7	
			HC	19	36±6*	16 (84)	NR	NR	N/A	R			
Mayerhof er (2020)	Norway	Jul 14 - Dec 16	HFrEF	84	59 (39– 74)#	34 (40)	25 (30) #	18 (21)*	I: 0 (0) II: 41 (49) III: 38 (45) IV: 5 (6)	R	16S rRNA (V3-V4)	8	
			HC	266	46 (30- 61)#	107 (40)	11 (4)#	2 (1)#	N/A	R			
Beale (2021)	Australia	Aug 17 - Jan 20	HFpEF	26	68±8*	6 (23)*	18 (69)*	4 (15)*	II-III: 26 (100)	R	16S rRNA (V4-V5)	8	
			Metropol itan HC	39	58±8*	22 (56)#	15 (38) 	0 (0)#	N/A	R			
			Regional HC	28	61±6*	9 (32)	5 (18)"	0 (0)#	N/A	R			
Huang (2021)	China	Aug 20 - Oct 21	HFpEF	30	71±9	19 (63)	25 (83)	NR	I: 0 (0) II: 6 (20) III: 18 (60) IV: 6 (20)	R	16S rRNA (V4-V5)	6	
			HC	30	67±7	17 (57)	N/A	N/A	N/A	R			
Wang (2021)	China	NR	CHF (unspecifi ed)	25	65±3	14 (56)	NR	NR	I: 2 (8) II: 5 (20) III: 7 (28) IV: 11 (44)	NR	16S rDNA (V3/V4)	5	
			HC	25	65±3	13 (52)	NR	NR	N/A	NR			
Sun (2022)	China	Apr 20 – Aug 20	CHF (3% HFpEF)	29	61±12	24 (83)#	14 (48)	10 (34)	I: 0 (0) II: 0 (0) III: 10 (34) IV: 19 (66)	R	16S rRNA (V3-V4)	6	
			НС	30	60±10	10 (33)*	11 (37)	5 (17)	N/A	NR			

METHODS

- Peer-reviewed papers were searched using the following keywords and MeSH terms: "gut microbiota", "heart failure"
- Human studies that compared the gut microbiota profile in adult HF patients to healthy controls (HCs) were included
- Interventional studies investigating the effects of gut modulating substances were **excluded**
- The Newscastle-Ottawa Scale (NOS) was used to assess the quality of included studies

RESULTS

total of **9 studies** were included in this systematic review. mprising of 827 participants (317 HF patients & 510 HCs)

I studies were observational and conducted in China, apan, Germany, Norway, and Australia

he alpha diversity analysis compared the gut microbiota iversity and/or richness of patients with HF and HCs Among HFrEF patients: microbial richness and diversity were **similar with HCs or decreased** Among HFpEF patients: decreased microbial richness

with **similar microbial diversity**

Il the studies (n=8) reported a **significantly different gut** nicrobiota composition (beta diversity) between the HF atients and HCs across all spectrums of HF, either HFrEF HFpEF

ere were changes in the relative abundance of gut **icrobiota taxonomy** in HF patients compared to HCs

e 2. Summary of the Gut Microbiota Alpha and Beta Diversity Results ⁼ patients compared to HCs

Studies	Alpha	Diversity	Beta Diversity		
	Microbial Richness	Microbial Diversity			
HFrEF					
Luedde (2017)	NR	\checkmark	Significantly different gut microbiota		
			composition between groups		
Cui (2018)	NR	NR	Significantly different gut microbiota		
			composition between groups		
Katsimichas (2018)	(=)	(=)	Significantly different gut microbiota		
			composition between groups		
Mayerhofer (2020)	\downarrow	(=)	Significantly different gut microbiota		
			composition between groups		
HFpEF					
Beale (2021)	\downarrow	NR	Significantly different gut microbiota		
			composition between groups		
Huang (2021)	\downarrow	(=)	Significantly different gut microbiota		
			composition between groups		
HFrEF + HFpEF					
Kamo (2017)	(=)	(=)	Significantly different gut microbiota		
			composition between groups		
Sun (2022)	\checkmark	\downarrow	Significantly different gut microbiota		
			composition between groups		
Unspecfied CHF					
Wang (2021)	NR	\checkmark	NR		
Notes					

- with HCs
- Notable reductions in the number of SCFA-fermenting bacteria also decreases the amount of "beneficial SCFAs" produced
- More SCFAs shown to **improve blood pressure** & **myocardial** repair, reduce inflammation, regulate the neuro-immunoendocrine system, strengthen the gut barrier, modulate immune function, & maintain normal heart contractile function & electrical stability

- gut microbiota
- compared to HCs

1.Savarese G, Becher PM, Lur
Cardiovasc Res. 2022.
2.Tang WHW, Kitai T, Hazen S
3.Beale AL, O'Donnell JA, Na
J Am Heart Assoc. 2021;10(
4.Silva YP, Bernardi A, Frozza
2020;11:25
5.Li M, van Esch B, Henricks P
Necrosis Factor a -Stimulate
6.Janardhan A, Chen J, Crawf
7.Appert O, Garcia AR, Frei R
endospore formers. Environ
8.Zhou Y, Zhang J, Zhang D, N
2021;59(10):941-8.
9.Li L, Ma L, Fu P. Gut microbi
10. Fontana A, Panebianco C,
on Their Region of Origin:

DISCUSSION

• We demonstrated the association between HF and gut dysbiosis from the **alpha and beta diversity changes** in the HF population compared

• Firmicutes, a phylum dominant in the healthy gut microbiota, were found to be **consistently depleted in HF patients**

• Meanwhile, a higher abundance of Proteobacteria was found, which may be responsible for worsening the development of HF due to proinflammatory cytokines produced

• The association between gut microbiome dysbiosis and HF **unfolds the** potential of dietary, medical, and supplementation (prebiotics/ **probiotics)** interventions in restoring healthy gut composition

• However, this study had several limitations such as environmental and lifestyle modification which play a role in the heterogeneity of the human

CONCLUSION

• Diminished gut microbiota richness and microbial diversity in HF patients

Significant differences in gut microbiota composition between the 2 groups

• Decrease in Firmicutes, a dominant phylum observed in the healthy gut microbiota, was notable in HF patients compared to HCs.

• Depletion in SCFA-producing gut bacteria in HF patients, which may ultimately contribute to changes in immune modulation and neuroenteroendocrine hormone imbalance; therefore affect the worsening of HF.

REFERENCES

l, Seferovic P, Rosano GMC, Coats A. Global burden of heart failure: A comprehensive and updated review of epidemiolo ut Microbiota in Cardiovascular Health and Disease. Circulation research 2017;120(7):1183-96. ME, Nanayakkara S, Vizi D, Carter K, et al. The Gut Microbiome of Heart Failure With Preserved Ejection Fraction. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor othelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol. 2018;9:533. PA. Altered systemic ketone body metabolism in advanced heart failure. Tex Heart Inst J. 2011;38(5):533-8. oduit C, Constancias F, Neuzil-Bunesova V, et al. Initial butyrate producers during infant gut microbiota development are al Microbiology. 2020:22(9):3909-21.

-derived short-chain fatty acids and kidney diseases. Drug Des Devel Ther. 2017;11:3531-42. cchianti-Diamanti A, Laganà B, Cavalieri D, Potenza A, et al. Gut Microbiota Profiles Differ among Individuals Depending 1 Italian Pilot Study. Int J Environ Res Public Health. 2019;16(21):4065.

WL, Wang X. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol.