

Stanford M E D I C I N E MEDICINE

Outcomes for Patients on DOACs in Compensated and Decompensated Cirrhosis

Background

- Cirrhotic patients are prone to thromboembolism as well as bleeding.
- Use of novel anticoagulants is well established in patients with compensated cirrhosis (CTP class A)
- Data on the efficacy and safety profile of DOACs in decompensated cirrhotic patients are limited

AIM

• Our AIM was to determine if clinical outcomes differed in those with compensated cirrhosis receiving DOACS (apixaban, rivaroxaban, edoxaban, and dabigatran) compared to those with decompensated cirrhosis in terms of thromboembolic events, atrial fibrillation (a fib), bleeding events, and TPA administration

Methods

- Single center review from 2015-present in all subjects with cirrhosis with/without decompensation at time of DOAC administration.
- Patients were required to have 90 days of history prior to the DOAC and at least 1 year of follow-up
- Decompensation was identified based on ICD codes (ascites, jaundice, gastric and esophageal varices, portal hypertension, hepatorenal syndrome, hepatic encephalopathy)
- We performed sensitivity analysis for MELD < 11, 11-14 and >14.
- The cohorts were compared for new onset a fib, bleeding (GI bleed, hemorrhagic stroke, retroperitoneal bleed), new onset thrombotic events (PVT, pulmonary embolism, DVT, occlusive stroke) and new administration of TPA before and after matching for all observable confounders using high dimensionality propensity score matching (Schuler, 2018) (Table 2)

Aysha Aslam MD¹, Saurabh Gombar, MD², Paul Yien Kwo, MD¹

	Demographics	lable
	Compensated cirrhosis	Decompensated cirrhosis
Ν	321	452
Females	116 (36.1%)	149 (33%)
Mean age (sd)	67.2 (12.8%)	63.6 (13%)
18-30 yr	7 (2.2%)	10 (2.2%)
30-40 yr	7 (2.2%)	18 (4%)
40-50 yr	19 (5.9%)	34 (7.5%)
50-60 yr	38 (11.8%)	88 (19.5%)
60-70 yr	106 (33%)	149 (33%)
70-80 yr	100 (31.2%)	119 (26.3%)
80-90 yr	44 (13.7%)	34 (7.5%)
Race (%)		
White	208 (64.8%)	242 (53.5%)
Other	45 (14%)	128 (28 3%)
Asian	44 (13 7%)	62 (13 7%)
Rlack	24(7.5%)	20(4.4%)
Hispanic	2 - (7.570) $A \cap (12.5\%)$	102(7.776)
Index year (%)	+0(12.370)	102 (22.070)
2015 2010	100(5020/)	227(50.20/)
2015-2019 2020 Decased	190(39.2%) 121(40.8%)	227(30.2%)
2020-Present	131(40.8%)	225 (49.8%)
Mean Pre-index days (sd)	3/46 (2352.2)	3452.3 (2493.6)
Mean follow up days (sd)	999.1 (646.7)	854 (500.4)
Number of encounters (sd)	33.3 (37.7)	40.5 (37.3)
Baseline labs (sd or %)		
Hb	12.6 (2.2)	11.8 (2.5)
INR	1.6 (0.5)	1.5 (0.4)
Platelet count	191.6 (65.7)	162.4 (113.1)
PT	15.1 (5.1)	14.6 (4.8)
Co morbidity score (sd)	7.5 (3.5)	10.5 (4.2)
Malignancy	98 (31%)	192 (42.48%)
Metastatic solid tumor	27 (8.41%)	70 (15.49 %)
Diabetes	109 (34%)	206 (45.58%)
Diabetes with complications	58 (18%)	139 (30.75%)
Congestive heart failure	153 (47.6%)	217 (48.01%)
Myocardial infarction	54 (16.82%)	84 (18.58%)
Peripheral vascular disease	75 (23.36%)	101 (22.35%)
Chronic pulmonary disease	137 (42.68%)	162 (35.84%)
Cerebrovascular disease	59 (18.38%)	90 (19 91%)
Dementia	13 (4 05%)	22(4.87%)
Heminlegia	13(4.05%) 13(4.05%)	18(3.98%)
Mild liver disease	310(00.38%)	A50 (00 56%)
Sovoro livor dicosco	$\frac{312(33.3070)}{11(3.420/3)}$	430(57.30%) 208(68.140/)
Donal diagona	$\frac{11(3.43\%)}{112(24.900\%)}$	300(00.14%)
Renal disease	112(34.89%)	252(51.55%)
Peptic ulcer disease	20(6.25%)	50(11.06%)
Rheumatic disease	15 (4.67%)	27 (5.97%)
HIV	2 (0.62%)	5 (1.11%)
Outcomes (sd or %)		
Atrial fibrillation	161 (50.16%)	198 (43.81%)
Bleeding event	35 (10.9%)	91 (20.13%)
Thrombotic event	63 (19.63%)	144 (31.86%)
TPA	2(0.62%)	5 (1.11%)

1. Division of Gastroenterology and Hepatology. Stanford University Medical Center, Stanford, CA 2. Atropos Health

Results

Table 2. Event analysis in matched
Event
Thrombosis
Decompensated (unmatched)
Compensated (unmatched)
Decompensated (propensity score matched
Compensated (propensity score matched)
TPA Administration
Decompensated (unmatched)
Compensated (unmatched)
Decompensated (propensity score matched
Compensated (propensity score matched)
Atrial Fibrillation
Decompensated (unmatched)
Compensated (unmatched)
Decompensated (propensity score matched
Compensated (propensity score matched)
Bleeding events
Decompensated (unmatched)
Compensateu (unmatcheu)
Decompensated (propensity score matched
Compensated (propensity score matched)
• In a single site observation
events, a fib, bleeding cc
compensated and decom
DOAC therapy
• We matched patients on
began DOAC administra
MELD into low, medium
consistent.
Limitations

- We reported a single center and retrospec data
- Sample size limited power in this study

ed and unmatched cohorts in compensated and decompensated cirrhos								
	Negative	Positive	OR (95% CI)	P value				
	308	144	1 (1.000, 1.000)	NA				
	258	63	0.522 (0.372, 0.733)	0.000128				
ed)	111	39	1 (1.000, 1.00)	NA				
d)	112	38	0.966 (0.575, 1.62)	0.895				
	447	5	1 (1.0000, 1.00)	NA				
	319	2	0.561 (0.0531, 3.45)	0.706				
ed)	148	2	1 (1.00000, 1.00)	NA				
d)	149	1	0.498 (0.00837, 9.66)	1				
	254	198	1 (1.000, 1.00)	NA				
	160	161	1.291 (0.969, 1.72)	0.0811				
ed)	65	85	1 (1.000, 1.00)	NA				
d)	78	72	0.706 (0.448, 1.11)	0.133				
	361	91	1 (1.000, 1.000)	NA				
	286	35	0.485 (0.319, 0.739)	0.000481				
ed)	129	21 1	(1.000, 1.00)	NA				
d)	0.867	20	0.945 (0.489, 1.83)					

Summary

ional analysis, we identified no difference in thrombotic omplication, or administration of TPA when comparing npensated liver cirrhosis patients who were receiving

all baseline observable confounders at the time they ation. For sensitivity analysis we stratified presenting n, high and for each subgroup the findings were

	Future Directions	
e	• Performing a prospective study	
ctive	• Performing a larger sample	
	size/multicenter study to increase the statistical power and validate these results	