

FACULTY OF

MEDICINE

INTRODUCTION

- GERD questionnaire [GerdQ] (2010) combines 3 questionnaires: • Reflux Disease Questionnaire [RDQ],
 - Gastrointestinal Symptom Rating Scale [GSRS], and
 - Gastro-oesophageal reflux disease Impact Scale [GIS])
- GerdQ is used as a **diagnostic tool** for GERD in primary care of many countries.
- The Asian guidelines for GERD diagnosis and treatment recommended using symptom-based diagnostic questionnaires such as **GerdQ** for diagnosing symptomatic GERD, despite the low level of evidence.
- The 2022 American College of Gastroenterology (ACG) guideline for GERD diagnosis recommended using the PPI test for establishing GERD diagnosis, which already has a moderate level of evidence.
- Aim: To summarize available evidence of the **diagnostic accuracy of** GerdQ compared to upper endoscopy and/or pH-metry for diagnosing GERD.

METHODS

• Inclusion criteria:

- Diagnostic Test Accuracy (DTA) studies comparing GerdQ to ambulatory pH-metry or upper endoscopy
- Adult patients presenting with symptoms suggestive of GERD who filled in the GerdQ and underwent gold standard test,
- Any GERD phenotypes (erosive or non-erosive reflux disease)

• Exclusion criteria:

- Studies with patients presenting with GERD alarm symptoms, pregnant patients, patients who are breastfeeding or with malignancy, and patients with extraesophageal manifestations
- The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess the study quality

• Meta-analysis using the random-effects model (DerSimonian-Laird) was done to summarize the overall sensitivity, specificity, likelihood ratios (LRs), and diagnostic odds ratio (DOR).

• The hierarchical summary receiver operating characteristics (HSROC) curve was calculated using the bivariate model alongside the area under the HSROC (AUC).

1. Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal Reflux Disease: A Review. Jama. 2020;324(24):2536-2547. 2. Gyawali CP, Kahrilas PJ, Savarino E, et al. Modern diagnosis of GERD: the Lyon Consensus. Gut. 2018;67(7):1351-1362. 3. Jones R, Junghard O, Dent J, et al. Development of the GerdQ, a tool for the diagnosis and management of gastro-oesophageal reflux disease in primary care. Aliment Pharmacol Ther. 2009;30(10):1030-1038. 4. Fock KM, Talley N, Goh KL, et al. Asia-Pacific consensus on the management of gastro-oesophageal reflux disease: an update focusing on refractory reflux disease and Barrett's oesophagus. Gut. 2016;65(9):1402-1415. 5. Jung HK, Tae CH, Song KH, et al. 2020 Seoul Consensus on the Diagnosis and Management of Gastroesophageal Reflux Disease. J Neurogastroenterol Motil. 2021;27(4):453-481. 6. Katz PO, Dunbar KB, Schnoll-Sussman FH, Greer KB, Yadlapati R, Spechler SJ. ACG Clinical Guideline for the Diagnosis and Management of

Gastroesophageal Reflux Disease. Am J Gastroenterol. 2022;117(1):27-56.

Evaluating the Diagnostic Accuracy of GerdQ for Diagnosis of Gastroesophageal Reflux Disease: A Meta-Analysis

Daniel Martin Simadibrata MD MRes^{1,2}, Eko Ngadiono MRes¹, Fira Alyssa Gabriella Sinuraya MD¹, Prof. Marcellus Simadibrata MD PhD^{3*}

¹Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

²Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom

³Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia – Ciptomangunkusumo Hospital, Jakarta, Indonesia *Corresponding Author

Table 1. Characteristics of the Included Studies

First Author	Country	Study Design	Period of Study	Reference Test	Sample Size	Patients excluded from analysis	Age (years)	Male (%)
Jones R (2009)	Germany, Sweden, Canada, Denmark, Norway, UK	Non-randomized trial	Sep 2005 - Nov 2006	Upper endoscopy, 48-h wireless esophageal pH monitoring	308	5	47±14	143 (46)
Lacy BE (2011)	USA	Cross-Sectional	Oct 2008 - Oct 2009	Wireless 48-h pH-metry	358 ^{\$}	6#	51±14	101 (28)
Bai Y (2013)	China	Cross-Sectional	Jan 2010 - Dec 2010	Upper endoscopy	8065	0	46±14	4043 (50)
Jonasson C (2013)	Norway	Cross-Sectional	Mar 2009 - Dec 2009	Upper endoscopy, 24- h pH-metry	169	0	47±15	90 (53)
Wang W (2014)	China	Cross-Sectional	Feb 2011 - Dec 2011	24-h pH-metry	95	13	49±12	44 (54)
Zavala-Gonzales MA (2014)	Mexico	Cross-Sectional	Jan 2011 - Oct 2012	Upper endoscopy, pH- metry	252	0	49.49	93 (37)
Zhou LY (2014)	China	Non-randomized trial	Sep 2011 - Dec 2012	Upper endoscopy, 24-h impedance pH monitoring	636	0	49±14	265 (42)
Siregar GA (2015)	Indonesia	Cross-Sectional	Oct 2015 - Dec 2015	Upper endoscopy	85	0	45±13	50 (59)
Wang M (2017)	China	Cross-sectional	Aug 2014- Dec 2015	Upper endoscopy	1233	0	54±12	532 (43)
Norder Grusell E (2018)	Sweden	Cross-Sectional	Oct 2009 - Apr 2014	24-h pH-metry	646	0	52 (15-84)	296 (46)
Vadivelu S (2019)	Malaysia	Cross-Sectional	NR	Upper endoscopy, pH- metry	104	0	47±1	50 (48)
Zaika S (2020)	Ukraine	Cross-Sectional	NR	24-h impedance pH monitoring	28	0	47±2	11 (39)
Chen G (2021)	China	Cross-Sectional	Jul 2018 - Aug 2018	Upper endoscopy	565	54	NR	290 (51)
Wang B (2021)	China	Cross-sectional	Jun 2016 - Jun 2019	Upper endoscopy	100	0	GERD: 45±4 Non-GERD: 45±4	GERD: 32 (52) Non-GERD: 19 (50)

GERD: Gastroesophageal Reflux Disease; NR: Not reported

Age presented in mean±SD / median (range) ^{\$}178 participants were off acid suppression, and 180 participants were on acid suppression

*1 participant were off acid suppression, and 5 participants were on acid suppression

7.Zhang M, Pandolfino JE, Zhou X, et al. Assessing different diagnostic tests for gastroesophageal reflux disease: a systematic review and network meta-analysis. Therapeutic Advances in Gastroenterology. 2019;12:1756284819890537. 8. Ghoneim S, Wang J, El Hage Chehade N, Ganocy SJ, Chitsaz E, Fass R. Diagnostic Accuracy of the Proton Pump Inhibitor Test in Gastro-

esophageal Reflux Disease and Noncardiac Chest Pain: A Systematic Review and Meta-analysis. J Clin Gastroenterol. 2022. 9.Yu LY, Sun LN, Zhang XH, et al. A Review of the Novel Application and Potential Adverse Effects of Proton Pump Inhibitors. Adv Ther. 2017;34(5):1070-1086.

10. Spechler SJ. Proton Pump Inhibitors: What the Internist Needs to Know. Med Clin North Am. 2019;103(1):1-14. 11. Strand DS, Kim D, Peura DA. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver. 2017;11(1):27-37.

DISCUSSION
 14 studies with a total of 12566 subjects were included, of which 3564 subjects had confirmed GERD diagnosis.
 The overall pooled sensitivity, specificity, and AUC of GerdQ was 67.8%, 66.6%, and 0.705, respectively GerdQ with a cut-off value of ≥8 = slightly modest diagnostic value for GERD GerdQ had better specificity (70.3%) in ERD diagnosis GerdQ was suboptimal in establishing NERD diagnosis (sensitivity of 38% and specificity of 57%)
 Despite better sensitivity, specificity, and AUC of GerdQ in GERD compared to previous meta-analysis, GerdQ was still insufficient to be used as the only screening or diagnostic tool for GERD
 While PPI test was shown to have moderate-to-high sensitivity (79%) for GERD, a lower specificity (45%) was expected due to the high placebo effect
 Upper endoscopy and esophageal pH/pH-impedance monitoring are known to be more sensitive and specific However, such reference tests are limited by the level of invasiveness and need for referral for primary care patients
 Some studies recommended increasing the GerdQ threshold to improve its diagnostic credibility in predicting GERD Only 1 study by Wang et al. used a GerdQ cut-off value >9 with a resulting in sensitivity and specificity of 87.7% and 65.8%
 Strengths of this meta-analysis: Extensive and up-to-date search of studies that identified an additional 8 articles not included in a previous meta-analysis
 Sensitivity analysis confirmed the robustness of our study findings
 Limitations of this meta-analysis: Only studies published in English were included
• Residual confounders (i.e PPI use) cannot be entirely excluded due to different exclusion criteria definitions used in the included studies
CONCLUSION
 This meta-analysis demonstrated that: GerdQ had slightly moderate sensitivity and specificity for confirming GERD diagnosis, especially for the ERD phenotype
 GerdQ may still be considered a GERD diagnostic tool in resource- limited settings which lacks accepted reference tests and when PPI test is unavailable or contraindicated