

Stable Coronary Artery Disease as the Indication for Coronary Stenting is Associated with a Reduced Risk of Gastrointestinal Bleeding Compared to Acute Coronary Syndrome

Pedro Cortés, M.D.¹, Christian Karime, M.D.¹, Jennifer J. Zeng¹, Samuel O. Antwi, Ph.D.², Shahyar M. Gharacholou, M.D.³, Maoyin Pang, M.D., Ph.D.⁴ 1. Division of Internal Medicine, Mayo Clinic Florida 2. Division of Epidemiology, Mayo Clinic Florida 3. Division of Cardiovascular Medicine, Mayo Clinic Florida 4. Division of Gastroenterology and Hepatology, Mayo Clinic Florida

BACKGROUND

Dual anti-platelet therapy (DAPT) increases the risk of a gastrointestinal bleed (GIB) after coronary stenting.

OBJECTIVE & HYPOTHESIS

- ✤ We aimed to determine whether acute coronary syndrome (ACS) compared to stable coronary artery disease (CAD) was associated with an increased risk of a GIB following coronary stenting at 180 days.
- We hypothesized that ACS would be associated with an increased odds of a GIB after coronary stenting.

METHODS

- Retrospective study across Mayo Clinic Florida between January 2015 and December 2021.
- Inclusion criteria: 1) successful coronary stenting, 2) initiation of DAPT, 3) age 18 years or older.
- Exclusion criteria: if any of the above not met or lost to follow up at 180 days.
- ✤ The primary outcome was the incidence of a GIB following coronary stenting at 180 days.
- Univariable analysis performed using Wilcoxon Rank Sum Test or Fisher Exact Test.
- Multivariable Logistic Regression Analysis with Bootstrap Resampling and Kaplan-Meier Estimates were performed.

CONCLUSIONS

- ✤ In this single-center retrospective cohort study, moderate alcohol use, acute coronary syndrome, hemoglobin < 10 g/dL at coronary stenting, and obesity were associated with a GIB after coronary stenting.
- Stable CAD as the indication for coronary stenting was associated with a 49% decreased odds of a GIB.
- ✤ Most patients (91.2%) are continued on their DAPT following their index GIB after coronary stenting.
- This study suggests coronary stenting for stable CAD before the manifestations of ACS could prevent the incidence of GIB.

Table 1: Baseline Characteristics of All Patients.

Median (IQR) or Fraction (% Age at Coronary Stent Placement Male gender White Race Hispanic Ethnicity Never Smoker Body Mass Index Obesity Comorbidities – defined as per HAS Hypertension Chronic Kidney Disease Liver Disease History of stroke Prior Major Bleeding Labile INR Age > 65Medication predisposing to bleeding Alcohol use HAS-BLED score **Coronary Catheterization Data** Pre-catheterization Endoscopy Perform ndication for coronary catheterization Acute Coronary Syndrome NSTEMI STEMI Stable CAD Number of Stents Placed Hemoglobin prior to catheterization • Hemoglobin < 10 g/dL**Medications After Catheterization** Proton pump inhibitor SSRI NSAIDs Anticoagulation

© 2022 Mayo Foundation for Medical Education and Research

Coronary stenting for ACS compared to stable CAD is associated with a 95% increased odds of a GI Bleed at 6 months.

`	All Patients	No GIB	GIB	n-value
,	N=506	N=338	N=168	p value
	72.2 (65.6-79.5)	71.8 (65.0-79.2)	73.2 (66.3-80.4)	0.223
	348 (68.8%)	237 (70.1%)	111 (66.1%)	0.361
	491 (97.0%)	327 (96.7%)	164 (97.6%)	0.782
	5 (1.0%)	4 (1.2%)	1 (0.6%)	1.000
	174 (34.4%)	125 (37.0%)	49 (29.2%)	0.091
	29.2 (25.8-33.9)	29.9 (26.3-34.7)	28.6 (24.5-32.7)	0.017
	232 (45.9%)	168 (49.7%)	64 (38.1%)	0.014
BLED				
	447 (88.3%)	298 (88.2%)	149 (88.7%)	1.000
	105 (20.8%)	62 (18.3%)	43 (25.6%)	0.063
	83 (16.4%)	59 (17.5%)	24 (14.3%)	0.444
	99 (19.6%)	70 (20.7%)	29 (17.3%)	0.406
	208 (41.1%)	145 (42.9%)	63 (37.5%)	0.251
	166 (32.8%)	108 (32.0%)	58 (34.5%)	0.615
	384 (75.9%)	253 (74.9%)	131 (78.0%)	0.508
	506 (100%)	338 (100%)	168 (100%)	NA
	77 (15.2%)	41 (12.1%)	36 (21.4%)	0.008
	4 (3-5)	4 (3-5)	4 (3-5)	0.492
ned	79 (15.6%)	51 (15.1%)	28 (16.7%)	0.697
	264 (52.2%)	158 (46 7%)	106 (63 1%)	<0.001
	183 (36 2%)	108 (32.0%)	75 (44 6%)	0.006
	81 (16.0%)	50 (14 7%)	31 (18 5%)	0.000
	242(47.8%)	180(53.3%)	62(36.0%)	
	1(1-2)	100 (55.570)	02 (30.770)	\0.001
	126(10.7-14.2)	12.9(11.0-14.2)	121(103-140)	0.019
	72 (14 2%)	37(10.9%)	35 (20.8%)	0.017
	/2 (14.270)	57 (10.570)	55 (20.070)	0.004
	228 (45.1%)	141 (41.7%)	87 (51.8%)	0.037
	60 (11.9%)	43 (12.7%)	17 (10.1%)	0.466
	5 (1.0%)	4 (1.2%)	1 (0.6%)	1.000
	158 (31.2%)	100 (29.6%)	58 (34.5%)	0.264

Table 2: Multivariable Logistic Regression Models for Acute GIB After Coronary Stenting at 180 days.

				Mul With	ltivariable Bootstrap	e Logistic Regressio Resampling of 2,0	n Models 00 samples					
		Model	1		Mode	2		Model	3		Model 4	
		6 variables		7 variables		8 variables		9 variables				
		AIC: 617.7102		AIC: 619.6446		AIC: 620.6700		AIC: 622.0386				
	AU	ROCC (9	95% CI)	AUROCC (95% CI)		AUROCC (95% CI)		AUROCC (95% CI)				
	0.6	664 (0.614	-0.714)	0.666 (0.616-0.716)		0.666 (0.615-0.716)		0.667 (0.617-0.717)				
Variable	OR (95% CI)	Р	Coefficient (95% CI)	OR (95% CI)	Р	Coefficient (95% CI)	OR (95% CI)	Р	Coefficient (95% CI)	OR (95% CI)	Р	Coefficient (95% CI)
(Intercept)	0.32 (0.21-0.48)	< 0.001	- 1.140 (-1.5910.751)	0.32 (0.21-0.48)	<0.001	- 1.140 (-1.15740.766)	0.38 (0.23-0.63)	<0.001	- 0.989 (-1.5370.507)	0.32 (0.17-0.61)	<0.001	- 1.145 (-1.8580.527)
Obesity	0.62 (0.42-0.91)	0.0164	- 0.480 (-0.8790.0.94)	0.63 (0.42-0.93)	0.0196	- 0.478 (-0.8960.103)	0.63 (0.42-0.93)	0.0207	- 0.475 (-0.9000.089)	0.63 (0.42-0.93)	0.0214	- 0.472 (-0.9070.060)
Alcohol Use	1.97 (1.19-3.29)	0.0091	+ 0.680 (0.188-1.201)	1.98 (1.19-3.31)	0.0087	+ 0.679 (0.193-1.186)	2.07 (1.23-3.48)	0.0061	+ 0.719 (0.214-1.243)	2.08 (1.24-3.50)	0.0057	+ 0.724 (0.218-1.240)
Prescribed Proton Pump Inhibitor	1.60 (1.06-2.41)	0.0256	+ 0.468 (0.052-0.913)	1.59 (1.05-2.43)	0.0294	+ 0.478 (0.075-0.927)	1.57 (1.03-2.40)	0.0343	+ 0.467 (0.037-0.926)	1.57 (1.03-2.40)	0.0348	+ 0.466 (0.009-0.922)
Stenting for Acute Coronary Syndrome	1.95 (1.32-2.89)	< 0.001	+ 0.668 (0.271-1.104)	1.93 (1.31-2.86)	0.0010	+ 0.667 (0.287-1.097)	1.91 (1.29-2.84)	0.0012	+ 0.658 (0.289-1.075)	1.92 (1.30-2.86)	0.0011	+ 0.665 (0.300-1.107)
Hemoglobin < 10 g/dL at Stenting	2.00 (1.17-3.41)	0.0110	+ 0.691 (0.137-1.280)	2.05 (1.18-3.56)	0.0106	+ 0.708 (0.159-1.305)	2.03 (1.17-3.53)	0.0115	+ 0.701 (0.103-1.352)	2.02 (1.16-3.51)	0.0124	+ 0.694 (0.092-1.291)
Major Bleed Prior to Catheterization	0.68 (0.45-1.03)	0.0684	- 0.385 (-0.830-0.035)	0.68 (0.44-1.03)	0.0706	- 0.375 (-0.813-0.034)	0.67 (0.44-1.02)	0.0617	- 0.388 (-0.824-0.022)	0.67 (0.44-1.02)	0.0634	- 0.385 (-0.837-0.019)
Pre-Catheterization Endoscopy Performed	NA	NA	NA	0.94 (0.52-1.66)	0.8344	- 0.0750 (-0.715-0.534)	0.95 (0.53-1.67)	0.8570	- 0.067 (-0.729-0.522)	0.97 (0.54-1.71)	0.9059	- 0.048 (-0.677-0.588)
Male Gender	NA	NA	NA	NA	NA	NA	0.80 (0.53-1.22)	0.2949	- 0.212 (-0.638-0.218)	0.81 (0.53-1.23)	0.3139	- 0.203 (-0.643-0.241)
Age > 65 years	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.20 (0.76-1.91)	0.4505	+ 0.186 (-0.254-0.700)

RESULTS

- significance. Table 2.
- Figure 1.

Figure 1: Cumulative Incidence of GIB by Indication for Coronary Stenting at 180 days Following Coronary Stenting.

STEMI -

Stable CAD - 242

✤ A total of 168/506 patients (33.2%) had a GIB after coronary stenting at 180 days.

✤ Of the 168 patients who had a GIB, 166 (98.8%) were still on DAPT at the time of GIB. Of these 166 patients, only 14 (8.4%) had their P2Y12 inhibitor discontinued at discharge from the hospital.

✤ On univariable analysis, obesity, moderate alcohol use, acute coronary syndrome, proton pump inhibitor, and hemoglobin < 10 g/dL were significantly associated with a GIB at 180 days. Table 1.

On multivariable logistic regression analysis, stenting for ACS was associated with a 95% increased odds of a GIB. Inversely, stable CAD was associated with a 49% decreased odds [OR 0.51, 95% CI: 0.35-0.76, p <0.001] of a GIB. Adjusting for male gender, age > 65 years, and whether a pre-catheterization endoscopy was performed within 6 months did not change the

✤ Following coronary stenting, 25% of patients had a GIB at 36 days, 41 days, or 159 days for NSTEMI, STEMI, or stable CAD, respectively, p = 0.0015.

indicati	on for Stenting	- NSTEMI	STEMI -	Stable CAD	
015					
015					
			_		
1					
	مستر				
30		90	, 120	150	180
30	60 Tin	90 me to GIB (days	120 5)	150	180
30 30 5k	60 Ti	90 me to GIB (days	120	150	180
30 30 sk 140	е́о Ті	90 me to GIB (days 124	s) 120 118	150	180
30 30 5k 140 62	е́о Ті 130 58	90 me to GIB (days 124 54	s) 120 118 52	150 115 50	180 108 50
30 30 sk 140 62 213	е́о Тіл 130 58 203	90 me to GIB (days 124 54 194	s) 120 118 52 189	115 50 184	180 108 50 180