Poster D0389

DIFFERENTIAL AND **COMBINATORIAL MECHANISM** OF ACTION OF GOLIMUMAB AND **GUSELKUMAB IN ULCERATIVE COLITIS INDUCTION THERAPY:** IL-23 BLOCKADE DRIVES **RESTORATION OF NORMAL EPITHELIUM AND MUCOSAL** HEALING

Prerak Desai, Patrick Branigan, Dylan Richards,* Marion Vetter, Daniel J. Cua, Thomas Freeman Translational Sciences, Immunology, Janssen Research & Development, LLC, Spring House, PA, USA.

*Presenting author.

CONCLUSIONS

- Combination induction therapy with golimumab (GOL) and guselkumab (GUS) induces higher rates of clinical remission, endoscopic improvement, and histologic remission than each monotherapy in tumor necrosis factor (TNF) α -naïve patients with moderately to severely active ulcerative colitis (UC)
- Combination therapy with GOL and GUS reverses the disease transcriptomic profile more than each monotherapy
- Leveraging relevant colonic single-cell–derived transcriptional modules provides a view into the mechanistic distinctions among treatments
- Key single-cell-derived transcriptional modules were identified as proximal markers of the interleukin (IL)-23 pathway and patient response
- IL-22 was identified as a mechanistic link to epithelial restitution
- Exploration into combinatorial molecular mechanisms and analysis of Week 38 data are ongoing

Acknowledgment

This study was sponsored by Janssen Research & Development, LLC. Editorial and medical writing support were provided by J. Matthew Kuczmarski, PhD, of Lumanity Communications Inc., and were funded by Janssen Global Services, LLC.

Disclosur

PD was an employee of Janssen Research & Development, LLC (a wholly owned subsidiary of Johnson & Johnson) at the time of the study. PB, DR, MV, DJC, and TF are employees of Janssen Research & Development, LLC (a wholly owned subsidiary of Johnson & Johnson) and may own Johnson & Johnson stock or stock options.

Reference 1. Smillie CS, et al. *Cell*. 2019;178(3):714-730.e22.

In the randomized, phase 2a VEGA clinical trial (**Figure 1**; ClinicalTrials.gov Identifier: NCT03662542), combination induction therapy with GOL, a TNF α antagonist, and GUS, an IL-23 inhibitor, was shown to induce higher rates of clinical remission, endoscopic improvement, and histologic remission than each monotherapy at Week 12 in TNF α -naïve patients with moderately to severely active UC (Figure 2)

• Here, we investigated the underlying mechanism of action of GOL, GUS, and the combination of GOL and GUS using colon tissue collected from patients with UC in VEGA

• Moderately to severely active UC (Mayo score 6-12, inclusive, and an endoscopy subscore ≥ 2 by central review • Naïve to TNFα, IL-12/23, and IL-23p19 antagonists and have had an inadequate response or intolerance to conventional therapy (immunosuppressants [AZA, 6-MP] and/or corticosteroids)

GOL, golimumab; GUS, guselkumab; UC, ulcerative colitis; R, randomization; SC, subcutaneous; q4w, every 4 weeks; IV, intravenous; q8w, every 8 weeks; COMBO, combination golimumab + guselkumab; TNF, tumor necrosis factor; IL, interleukin; AZA, azathioprine; 6-MP, 6-mercaptopurine.

METHODS

- Colon biopsies were obtained at screening and at Week 12 in patients who received GOL (n = 48), GUS (n = 52), or the combination of GOL and GUS (n = 50)
- Tissue transcriptional profiles at Week 12 versus baseline were determined with RNA-seq (Table 1)

Table 1. Colon Biopsy RNA-seq Samples

	GOL	GUS	COMBO
Baseline	55	57	66
Week 12	52	58	58
Number of paired samples	48	52	50

RNA-seq, RNA sequencing; GOL, golimumab; GUS, guselkumab; COMBO, combination golimumab + guselkumab

- Significant differences were interpreted in the context of cell-type-specific transcriptional modules by leveraging (Figure 3):
- Gene correlation networks (GCNs)
- Colonic single-cell data
- Gene module scores (from gene set variation analysis [GSVA]) were used to quantitatively assess pharmacodynamics (PD) and response-related biology

Figure 3. GCNs Used to Analyze Differentially Expressed Genes

VEGA bulk RNA-seq GCN

Each cluster of genes (nodes with similar color) represent co-expressed genes that arise due to their association with a particular cell type or pathway.

BACKGROUND/OBJECTIVE

Patient population

Monotherapies at Week 12

GOL, golimumab; GUS, guselkumab; CI, confidence interval; COMBO, combination golimumab + guselkumab; CMH, Cochran–Mantel–Haenszel. Clinical remission was defined as a Mayo stool frequency subscore of 0 or 1 and not increased from baseline; a rectal bleeding subscore of 0; and an endoscopy subscore of 0 or 1 with no friability present on the endoscopy. Endoscopic improvement was defined as an endoscopy subscore of 0 or 1, with no friability. Histologic remission was defined as the absence of neutrophils from the mucosa (lamina propria and epithelium); no crypt destruction; and no erosions, ulcerations, or granulation tissue, according to the Geboes grading system. ^aThe adjusted treatment difference between the combination therapy and monotherapy groups and CI were based on the Wald statistic with the CMH weight. ^bP value was based on the CMH chi-square test, stratified by corticosteroid use at baseline (yes or no). ^cThe 80% CIs were based on the Wald statistic.

RESULTS

Key single-cell-derived transcriptional modules were identified as proximal markers of the IL-23 pathway and patient response (Figures 5 and 6)

• The IL-23 module (23 genes) derived from the colonic T-cell single-cell co-expression graph reflects an inflammatory transcriptional Th17-like state (including genes *IL-22*, *IL-17A*, *IL-12Rβ1*, and *RAR-related orphan* receptor C; Figure 5)

Marker for IL-23 biology: Significant decreases in GUS and combination therapy non-responders but not in GOL non-responders (Figure 6)

• A predictive cell signaling algorithm (NicheNet) supported IL-23 as the main driver of this biology¹

Figure 5. Change in Single-cell–derived Transcriptional Modules With Treatment

fibroblast GOL GUS COMBO

ligand 20, signal transducer and activator of transcription 3, C-X-C motif chemokine ligand 1, and dual oxidase; Figure 5)

• IL-22 was a top-ranked ligand predictive of changes in this module expression (part of the IL-23 module) • **Crypt destruction histological subscore** was significantly lower at Week 12 in GUS and combination therapy but not in GOL treatment group (*data not shown*)

and Responders

*P <0.05.

Figure 2. Combination Therapy With GOL and GUS Induces Higher Rates of Clinical, Endoscopic, and Histo-endoscopic Outcomes Than

GSVA, gene set variation analysis; GOL, golimumab; GUS, guselkumab; COMBO, combination guselkumab + golimumab therapy; ns, non-significant.

• **Proximal to GUS mechanism:** Decreases more in GUS and combination therapy non-responders than in GOL (**Figure 7**)

Figure 7. Change in Epithelial Inflammatory Response Module GSVA Score With Treatment in Non-responders

GSVA, gene set variation analysis; GOL, golimumab; GUS, guselkumab; COMBO, combination guselkumab + golimumab therapy; ns, non-significant. Responders defined as those patients with an endoscopic improvement subscore of 0 or 1.