# How Reliable is Circulating Tumor DNA in Detecting Disease Progression and Regression of Non-colorectal Gastrointestinal Cancers?

<u>Bipin Ghimire<sup>1</sup></u>, Ujjwal Karki<sup>1</sup>, Emma Herrman<sup>1</sup>, Samiksha Pandey<sup>1</sup>, Mohammad Muhsin Chisti<sup>2</sup> 1- Beaumont Health - Royal Oak, MI, Internal Medicine, Royal Oak, MI, United States of America; 2 - Beaumont Health - Royal Oak, MI, Hematology/Oncology, Royal Oak, MI, United States of America

#### Introduction

- Circulating tumor DNA is short DNA sequence shed by tumor cells to the circulation [1]
- CtDNA has a vast possible applications: tumor molecular profiling, tracking treatment response, detection of resistance, and detection of minimal residual disease [1]
- > Literature is limited for non-colorectal GI cancers, with a few studies available for pancreatic, hepato-biliary and gastric cancers [2-6]
- > Dynamic ctDNA changes during treatment and detection of progression or regression has not been well described in studies [2-6]

## Methodology

- Study design and setting:
- Retrospective observational study of 18 patients with noncolorectal GI cancers at William Beaumont Hospital, MI

#### > Inclusion/Exclusion criteria:

• Included patients ≥ 18 years of age. Excluded patients without corresponding imaging to compare

#### Variables:

- Baseline characteristics: Demographics, BMI, tobacco/alcohol use, family history, stage of disease, treatment received
- Variables of interest:
  - Disease progression: increased size of known cancerous lesion or development of new lesion, noted in imaging
  - Disease regression: decreased or resolution size of known lesion
  - Presence of disease: Significant burden of disease noted on imaging
  - Absence of disease: no cancerous lesions on imaging

## Results

Charao Age Sex Patien

> BMI Tobace Alcoho Family

> > Type of

Stage

Treatn

## Methodology

#### > Statistical Analysis:

• With single ctDNA: Correlation of single ctDNA results with imaging to predict presence of disease

• With serial ctDNA: Analysis of pairs of consecutive ctDNA trend (either up-trending or down- trending or negative persistently) and correlation with imaging to predict disease

progression/regression

• Calculation of sensitivity, specificity, PPV, NPV for analyses of both single and serial ctDNA

#### **Baseline characteristics of participants**

| Frequency                                   |
|---------------------------------------------|
| 64 (31, 80)                                 |
| Male 50% (9/18)                             |
| Caucasian 66.7% (12/18)                     |
| AA 16.7% (3/18)                             |
| Others 16.7% (3/18)                         |
| 27 (20, 35)                                 |
| 77.8% (14/18)                               |
| 16.7% (3/18)                                |
| 0% (0/19)                                   |
| Hepato-biliary carcinoma - 33.3% (6/18)     |
| Pancreatic adenocarcinoma - 27.8% (5/18)    |
| Anal squamous cell carcinoma - 11.1% (2/18) |
| Neuroendocrine tumor - 11.1% (2/18)         |
| Gastric adenocarcinoma - 5.6% (1/18)        |
| Small bowel adenocarcinoma - 5.6% (1/18)    |
| GI cancer of unknown origin - 5.6% (1/18)   |
| Stage I - 5.6% (1/18)                       |
| Stage II - 22.2% (4/18)                     |
| Stage III - 33.3% (6/18)                    |
| Stage IV - 38.9% (7/18)                     |
| Chemotherapy - 83.3% (15/18)                |
| Surgery - 55.5% (10/18)                     |
| Targeted therapy - 44.4% (8/18)             |
| Immunotherapy - 33.3% (6/18)                |
| Radiation - 16.7% (3/18)                    |
|                                             |

#### Results

#### > Analysis with single ctDNA: predicts presence of disease

| CtDNA results<br>(Single values) | Imaging finding     |                    |       |
|----------------------------------|---------------------|--------------------|-------|
|                                  | Presence of disease | Absence of disease | Total |
| Positive                         | 12                  | 0                  | 12    |
| Negative                         | 8                   | 13                 | 21    |
| Total                            | 20                  | 13                 | 33    |

#### ✓ Finding: Sensitivity - 60% ; Specificity - 100%; PPV - 100%; **NPV – 61.9%**

Analysis with serial ctDNA

#### □ All ctDNA values and disease trend

| CtDNA trend<br>(Pairs) | Imaging finding        |                    |                   |                    |       |
|------------------------|------------------------|--------------------|-------------------|--------------------|-------|
|                        | Disease<br>progression | Disease regression | Stable<br>disease | Absence of disease | Total |
| Up trending            | 4                      | 0                  | 1                 | 0                  | 5     |
| Down<br>trending       | 0                      | 4                  | 0                 | 0                  | 4     |
| Persistent<br>Negative | 0                      | 0                  | 1                 | 5                  | 6     |
| Total                  | 4                      | 4                  | 2                 | 5                  | 15    |

#### Up-trending ctDNA analysis: predicts disease progression

| CtDNA trend     | Imaging finding     |                        |       |
|-----------------|---------------------|------------------------|-------|
|                 | Disease progression | Other than progression | Total |
| Up-trending     | 4                   | 1                      | 5     |
| Non up-trending | 0                   | 10                     | 10    |
| Total           | 4                   | 11                     | 15    |

**NPV – 100%** 

✓ Finding: Sensitivity – 100%; Specificity – 90.9%, PPV – 80%;

#### Results

#### **Down trending ctDNA analysis: predicts disease regression**

| CtDNA trend       | Imaging finding    |                       |       |  |
|-------------------|--------------------|-----------------------|-------|--|
|                   | Disease regression | Other than regression | Total |  |
| Down-trending     | 4                  | 0                     | 14    |  |
| Non down-trending | 0                  | 11                    | 11    |  |
| Total             | 4                  | 11                    | 15    |  |

✓ Finding: Sensitivity- 100%; Specificity – 100%; PPV – 100%; **NPV – 100%** 

> Median Lead time: Earlier detection of progression by ctDNA compared to imaging: 44 days

#### **Discussion and Conclusion**

- > We describe good sensitivity, specificity, PPV and NPV of serial ctDNA to detect either disease progression or regression. But lower than our separate analysis of colorectal cancers.
- > Above test results, and lead time of 44 days can assist physicians to make/change treatment plans prior to the imaging, and can reduce radiation exposure
- > Our sample size was small and we recommend larger prospective studies are required to describe impact of ctDNA – guided surveillance in clinical outcomes

#### References

- Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med. 2018 Nov;379(18):1754-65
- Azad TD, Chaudhuri AA, Fang P, et al. Circulating Tumor DNA Analysis for Detection of Minimal Residual Disease After Chemoradiotherapy for Localized Esophageal Cancer. Gastroenterology. 2020 Feb;158(3):494-505.e6
- Term Follow-Up Patients with Hepatocellular Carcinoma. Clinical Cancer Research. 2019 Sep 3;25(17):5284–94
- tumor DNA (ctDNA) and prognosis in pancreatic cancer. Critical Reviews in Oncology/Hematology. 2021 Dec;168:103528
- Lapin M, Huang HJ, Chagani S, et al. Monitoring of Dynamic Changes and Clonal Evolution in Circulating Tumor DNA From Patients With IDH-Mutated Cholangiocarcinoma Treated With Isocitrate Dehydrogenase Inhibitors. JCO Precis Oncol. 2022 Feb;6:e2100197
- Yang J, Gong Y, Lam VK, et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020 May 11;11(5):1–9



## Beaumont

# **WR** School of MEDICINE

Cai Z, Chen G, Zeng Y, et al. Comprehensive Liquid Profiling of Circulating Tumor DNA and Protein Biomarkers in Long-Guven DC, Sahin TK, Yildirim HC, et al. A systematic review and meta-analysis of the association between circulating