

Socioeconomic and Clinical Factors Predicting Management of Patients with Helicobacter Pylori in a Large

Safety-Net Hospital

라 Grady

Collins Mbonu MD¹, Thuy-Van P. Hang MD², Anudeep Neelam MD¹, Jason Brown MD²

¹Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States

²Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States

Demographic

BACKGROUND

- Helicobacter pylori (H. pylori) is a common infection in the United States, with a lifetime prevalence of ~33%.
- *H. pylori* is a strong risk factor for dyspepsia, peptic ulcer disease, and gastric adenocarcinoma.
- Studies have shown that numerous socioeconomic and clinical factors influence *H. pylori* eradication success.
- However, there is a paucity of studies that assess the correlation of such factors on eradication test ordering and completion practices.

AIM

• The aim of our study was to assess demographic, socioeconomic, and clinical factors that may influence eradication testing practices of patients with *H. pylori* in a large safety-net hospital.

METHODS

- Retrospective, single-center chart review study.
- Inclusion criteria: Biopsy-proven H. pylori infection after upper endoscopy.
- Exclusion criteria: Age < 18 years.
- Time range: November 2015 to May 2021.
- Demographic data: Sex, age, and race/ethnicity.
- Socioeconomic data: Insurance type/status, preferred language, Gini index, and distance from hospital.
- Clinical data: Setting of endoscopy and clinic follow-up after diagnosis.
- Primary Outcomes:
 - Ordering of H. pylori eradication testing
 - Completion of H. pylori eradication testing
 - Successful eradication of H. pylori infection
- Statistical analyses included the Pearson chisquared test and T-test. Statistical significance was defined as P ≤ 0.05.

RESULTS: FIGURES & TABLES

Figure 1. Distribution of Primary Outcomes

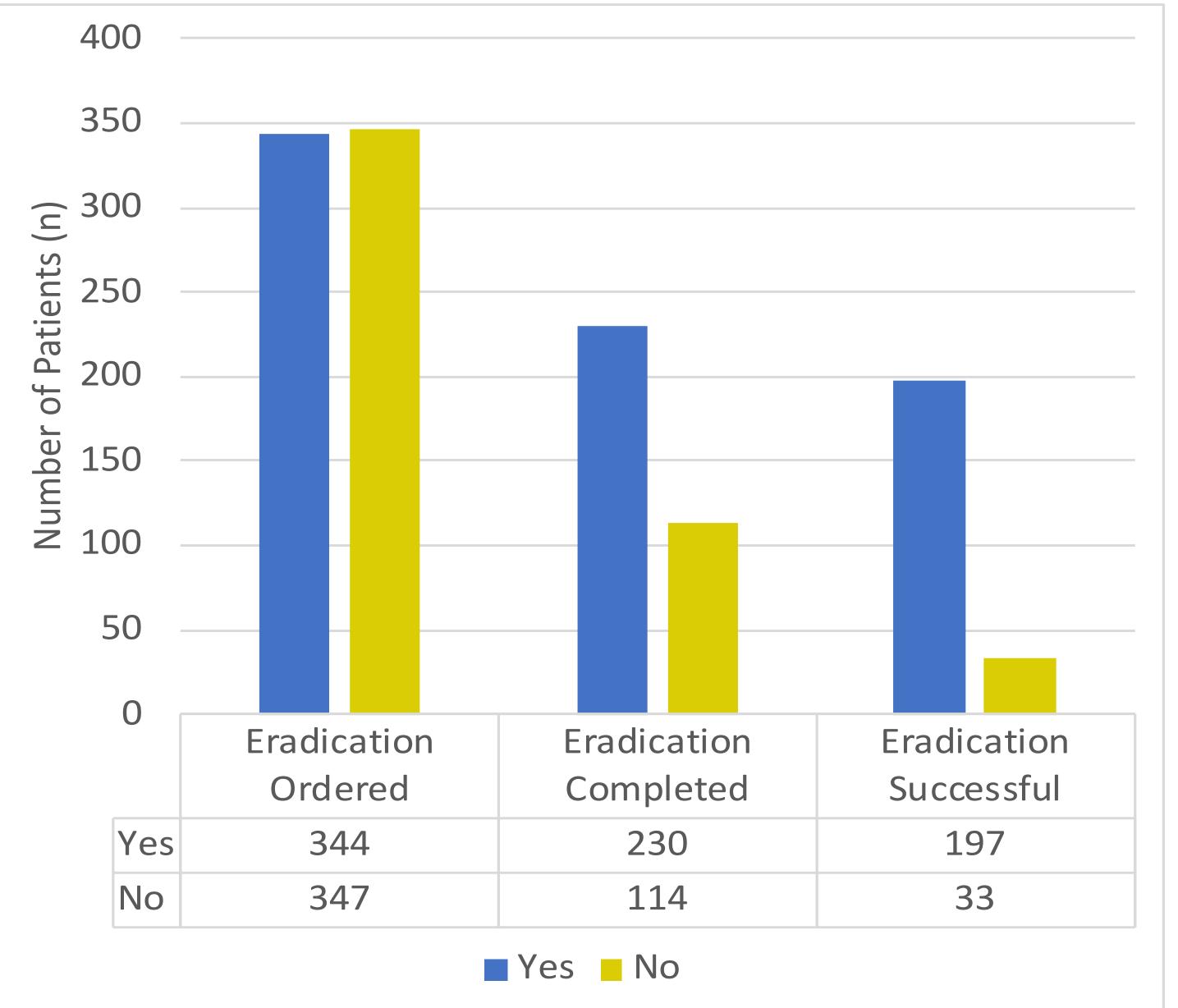


 Table 1. Cohort Baseline Demographic Characteristics

Demographics	N = 694		
Sex, n (%)			
Male	370 (53.3)		
Female	324 (46.7)		
Age, mean (SD)	55.9 (13.1)		
Race/Ethnicity, n (%)			
Asian	21 (3.0)		
Black	585 (84.3)		
Hispanic	64 (9.2)		
White	22 (3.2)		
Other	1 (0.1)		
Multiracial	1 (0.1)		
Insurance Type, n (%)			
Private	121 (17.7)		
Public	325 (47.5)		
Uninsured	239 (34.9)		

Table 2. Comparison of Patient Factors for Eradication Test Ordered vs Not Ordered Status

Eradication

Eradication

P-value

/Socioeconomic/Clinical Characteristics	Test Ordered (n=344)	Test Not Ordered (n=347)	
Sex, n (%)			0.003
Male	164 (47.7)	204 (58.8)	
Female	180 (52.3)	143 (41.2)	
Race/Ethnicity, n (%)			0.13
Asian	15 (4.4)	6 (1.7)	
Black	280 (81.4)	303 (87.3)	
Hispanic	35 (10.2)	29 (8.4)	
White	12 (3.5)	9 (2.6)	
Other	1 (0.3)	0 (0)	
Multiracial	1 (0.3)	0 (0)	
Insurance Type, n (%)			0.46
Private	65 (19.2)	55 (16)	
Public	154 (45.6)	170 (49.4)	
Uninsured	119 (35.2)	119 (34.6)	
Preferred Language, n (%)			0.002
English	287 (83.7)	316 (91.6)	
Non-English	57 (16.3)	31 (8.4)	
Endoscopy Setting, n (%)			<0.0001
Inpatient	100 (29.1)	181 (52.2)	
Outpatient	244 (70.9)	166 (47.8)	
Follow-up Scheduled, n (%)	296 (86.3)	183 (52.7)	<0.0001
Distance from Hospital in Miles, mean (SD)	18.4 (118.9)	16.3 (41.2)	0.76
Gini Index, mean (SD)	0.46 (0.05)	0.47 (0.05)	0.02

RESULTS

- Eradication testing was ordered for ~50% of patients in the overall cohort (Figure 1).
- Of patients who had eradication testing ordered,
 67% completed testing (Figure 1).
- 34% of the total cohort completed eradication testing (Figure 1).
- 86% of patients who completed eradication testing achieved successful cure of *H. pylori* infection (Figure 1).
- Male sex, non-English preferred language, inpatient endoscopy, lack of scheduled patient follow-up, and living in areas of higher income disparity (higher Gini index) were all associated with less likelihood of ordering of eradication testing by providers (Table 2).
- Male sex, non-English preferred language, and inpatient endoscopy were all associated with a lower likelihood of eradication testing completion.
- There were no significant predictors of successful eradication of *H. pylori* infection.

CONCLUSIONS

- Patients that (1) were male, (2) had a non-English preferred language, (3) received inpatient endoscopy, (4) did not have scheduled follow-up, and/or (5) lived in areas of higher income disparity were at increased risk of failure of eradication test ordering and/or completion.
- Study Strength:
 - Examines a unique set of socioeconomic and clinical factors.
- Study Limitation:
 - Cohort had a high percentage of black patients which limits generalizability.
- Study results suggest that processes that improve scheduling of follow-up after diagnosis, particularly for inpatient diagnosis, male patients, non-English speaking patients, and patients in areas of higher income disparity may improve eradication test ordering and completion practices.

REFERENCES

- 1. Eusebi LH, et al. Helicobacter 2014;19:1-5.
- 2. Peña-Galo E, et al. Gastroenterol Hepatol Bed Bench; 14(1):53-58.
- 3. Kim BJ, et al. Helicobacter 2019;24(5):12646.