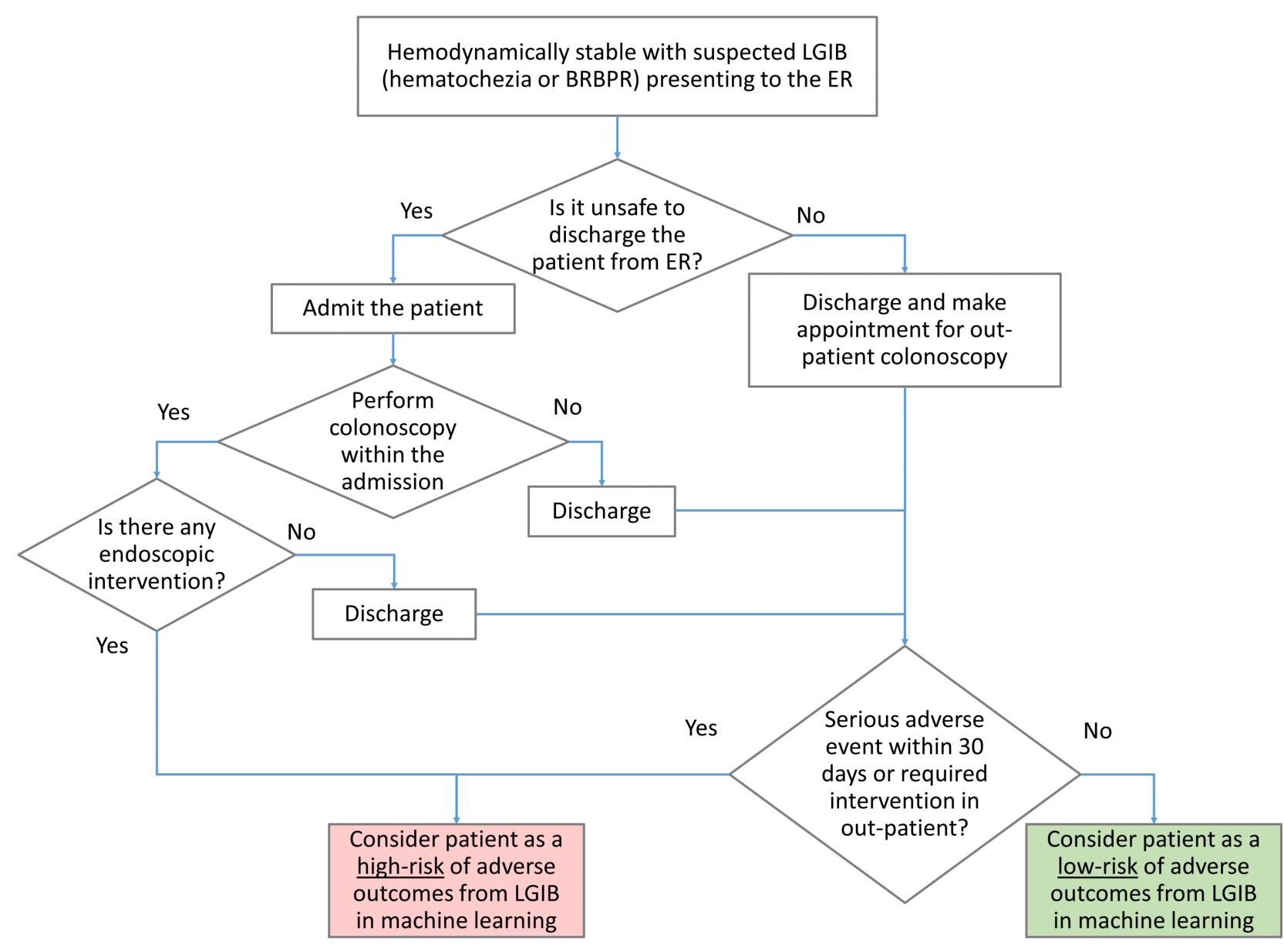


Introduction

Lower gastrointestinal bleeding (LGIB) is a common Overall 1414 records were reviewed. General characteristics are demonstrated in Tables 1 and 2. There were 69 HR patients and 1345 LR patients. Among the included cause of hospital admissions and can lead to factors, age, blood pressure, pulse, BUN, Hb, INR, quartile of transfusions, and being on antiplatelet agents were statistically different between the 2 risk groups. Table 3 hospital-based interventions that consume a shows the statistical results for the training and testing phases. Logistic regression model scores were normalized to 10, and cut-offs were plotted on an ROC curve significant amount of medical resources. However, (Figure 2). only a minority of cases are high-risk and result in Hemodynamically stable with suspected LGIB significant morbidity and mortality. We present an (hematochezia or BRBPR) presenting to the ER oversampling method to help with rebalancing for machine learning modeling for triaging in LGIB s it unsafe to when there is significant imbalance between high discharge the patient from ER? risk (HR) and low risk (LR) patients.

Method

From retrospective data, hemodynamically stable patients with suspected LGIB were labeled into HR or LR groups (Figure 1). Risk factors associated with LGIB (e.g. age, sex, blood pressure, hemoglobin) were included as predictors. The dataset was divided into 80% for training and 20% for testing. Two machine learning models (stepwise logistic regression and decision trees) were applied to the training data to create predictive models. Then, the training and testing performances were evaluated using standard performance metrics (e.g. sensitivity, specificity, and F1).

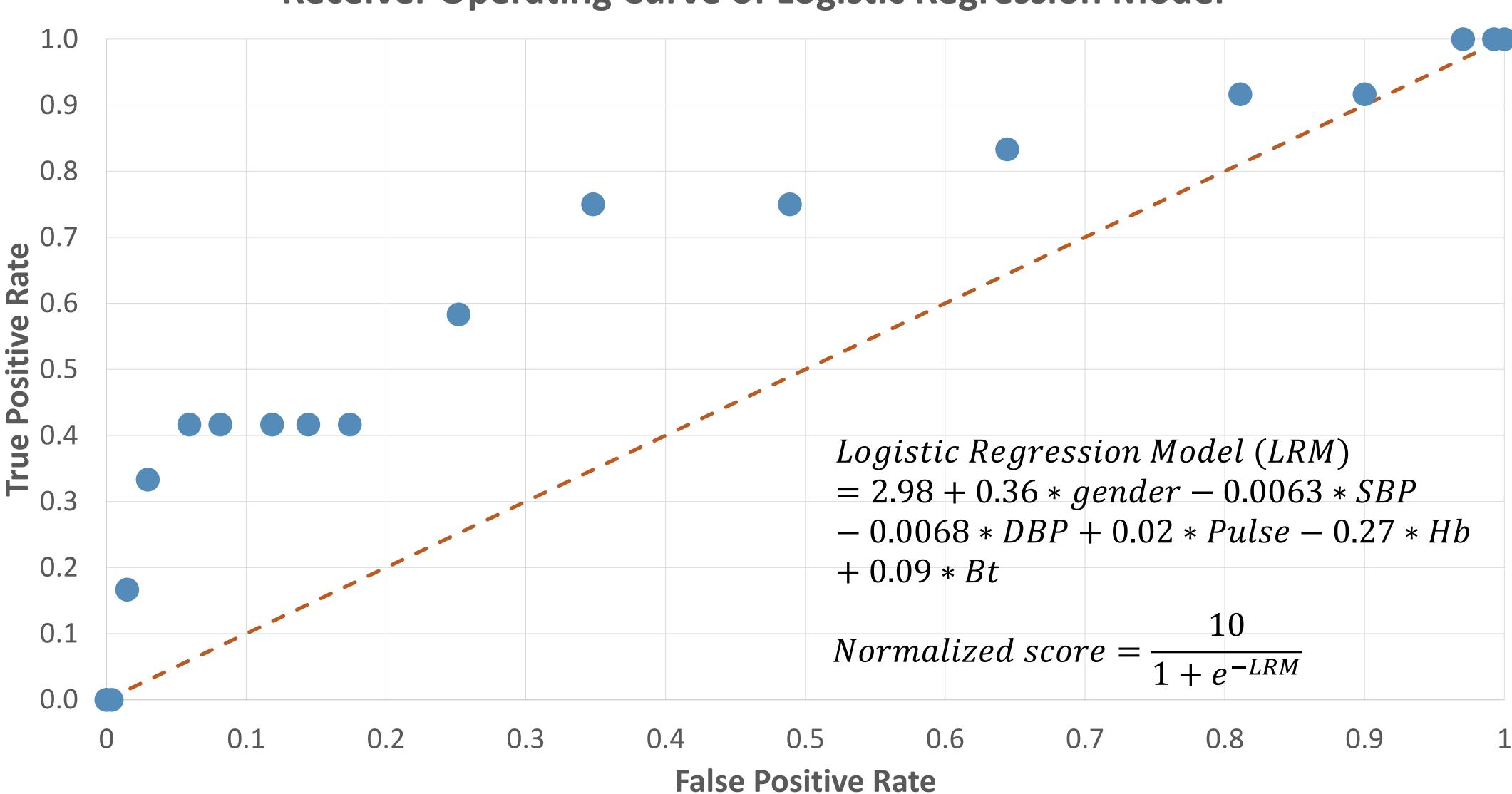

Conclusion

Logistic regression did not perform as well as so decision trees in training; however, it can generalize better to unseen data. Obtaining more HR cases can reduce the overfitting issue and provide a more accurate predictive model.

Figure 1. Algorithm for classifying low-risk and high-risk of LGIB. BRBPR = bright red blood per rectum, ER = emergency room, LGIB = lower gastrointestinal bleeding

Using Oversampling in Machine Learning Models for Patient Risk Stratification for Acute Lower **Gastrointestinal Bleeding**

Jonathan JC Ho, MD¹, George M. Hanna III, MD¹, Amber Charoen, MD², Fadlallah Habr, MD³ ¹Department of Internal Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI ²Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD ³Division of Gastroenterology, Warren Alpert School of Medicine, Brown University, Providence RI



	Training		Testing		
	Logistic	Decision	Logistic	Decision	
	Regression	Trees	Regression	Trees	
Positive Class	586 (51.8%)	586 (51.8%)	12 (4.3%)	12 (4.3%)	
Accuracy	0.7067	0.9452	0.7447	0.9433	
Sensitivity/Recall	0.6911	0.9078	0.5833	0.0833	
Specificity	0.7234	0.9853	0.7519	0.9815	
Pos Pred Value/Precision	0.7284	0.9852	0.0946	0.1667	
Neg Pred Value	0.6858	0.9088	0.9760	0.9601	
-1	0.7093	0.9449	0.1628	0.1111	

Table 3. Performance metrics of logistic regression compared to decision trees.

Results

Table 1. General characteristics		Table 2. General charact	Table 2. General characteristics continued		
Factors	Values	Factors	Values		
Age (years)	61.0 (44.0,76.0)	BUN	16.0 (12.0,22.0)		
Sex (male)	690 (48.8%)	Hemoglobin (Hb)	13.2 (11.7,14.5)		
Alcohol use	656 (46.39%)	Creatinine	0.83 (0.71,1.04)		
Drug use	232 (16.41%)	Prothrombin time	11.9 (11.3,13.1)		
Blood pressure – systolic (SBP)	138.0 (124.0,154.0)	INR	1.1 (1.0,1.2)		
Blood pressure – diastolic (DBP)	78.0 (68.0,88.0)	Platelets	227.0 (184.0,275.75)		
Pulse	82.0 (73.0,92.0)	WBC	7.9 (6.2,10.0)		
Anticoagulant use	198 (14.0%)	Blood transfusion (Bt)	0.0 (0.0,0.0)		
Antiplatelet use	61 (4.31%)	Last visit within 30			
NSAID use	211 (14.92%)	days	27 (1.91%)		
Other procedures during		High-risk of LGIB	69 (4.88%)		
admission	1404 (99.29%)				

Figure 2. Receiver operative curve of the logistic regression model on testing data. The area under the curve is 0.754.

Receiver Operating Curve of Logistic Regression Model