Hepatic safety of ozanimod in ulcerative colitis and relapsing multiple sclerosis phase 3 trials

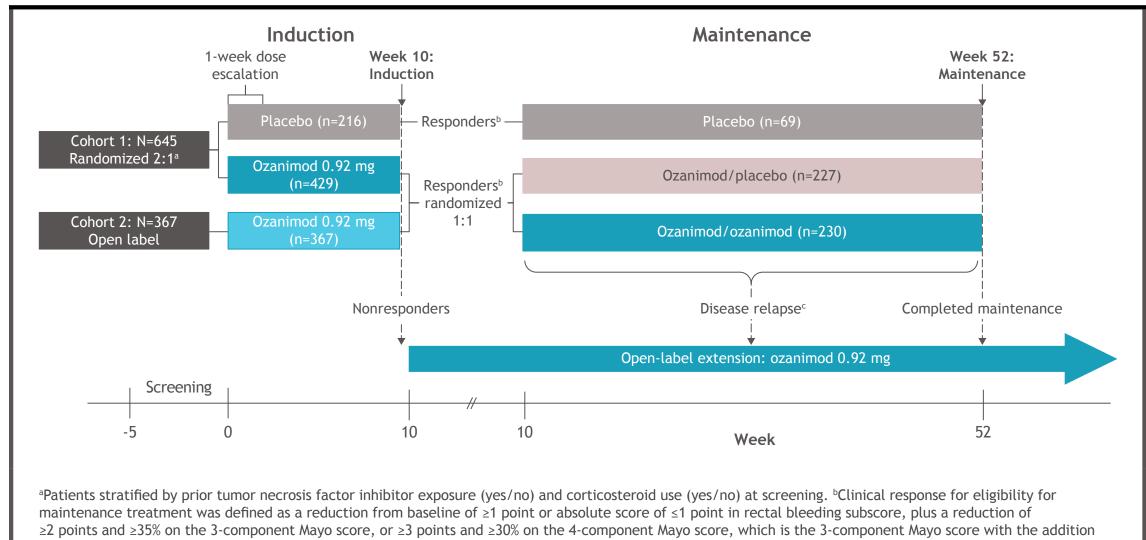
David T. Rubin,¹ Freddy Caldera,² Jeffrey Cohen,³ Stefan Zeuzem,⁴ Chun-Yen Cheng,⁵ Shabana Ather,⁵ Lorna Charles,⁵ James K. Sheffield,⁵ Axel Dignass⁶

¹The University of Chicago Medicine's Inflammatory Bowel Disease Center, Chicago, IL, USA; ²University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; ³Cleveland Clinic, Cleveland, OH, USA; ⁴Goethe University Hospital, Frankfurt, Germany; ⁵Bristol Myers Squibb, Princeton, NJ, USA; ⁶Agaplesion Markus Hospital, Goethe University, Frankfurt, Germany

Introduction

- Ozanimod, an oral sphingosine 1-phosphate (S1P) receptor modulator selectively targeting S1P₁ and $S1P_5$, induces S1P receptor internalization and prevents lymphocyte migration to the intestines¹⁻³
- Ozanimod is approved in the United States and European Union for the treatment of moderately to severely active ulcerative colitis (UC) and relapsing forms of multiple sclerosis (MS)^{2,3}
- The phase 3 True North trial (NCT02435992) demonstrated the efficacy and tolerability of ozanimod in patients with moderately to severely active UC⁴
- In the phase 3 SUNBEAM (NCT02294058) and RADIANCE (NCT02047734) trials, ozanimod was more effective than interferon beta-1a (IFN B-1a) and was generally well tolerated in patients with relapsing MS^{5,6}
- Other S1P receptor modulators have shown elevations in hepatic enzymes⁷⁻⁹
- Therefore, hepatic enzymes and hepatic-related treatment-emergent adverse events (TEAEs) were closely monitored in the ozanimod clinical trials

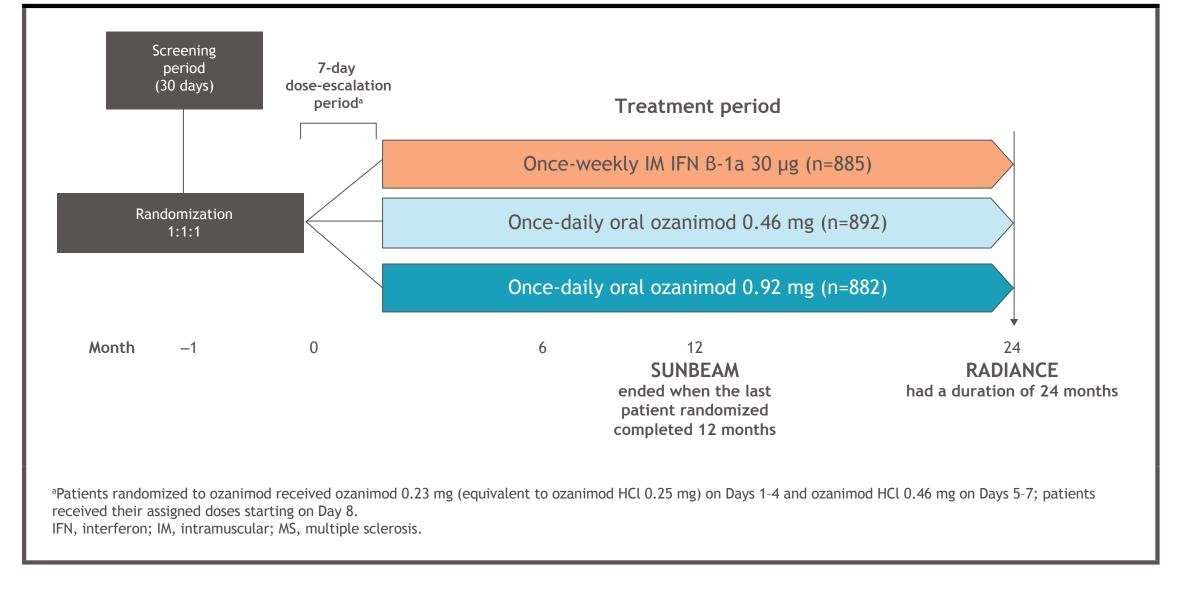
Objective


• To evaluate the hepatic safety of ozanimod 0.92 mg in the UC and MS phase 3 clinical trials

Methods

Study design and patients

- The UC trial (True North)⁴ was a 52-week, randomized, double-blind, placebo-controlled phase 3 trial that evaluated the efficacy and safety of ozanimod in patients with moderately to severely active UC (Figure 1)
- This safety analysis included 216 patients treated with placebo and 796 patients treated with ozanimod 0.92 mg (equivalent to ozanimod HCl 1 mg)


Figure 1. Study design of UC trial (True North)

of the Physician's Global Assessment subscore. Obsease relapse was defined as partial Mayo score increase ≥ 2 points vs the Week 10 score and absolute score \geq 4 points, endoscopic subscore of \geq 2 points, and exclusion of other causes of an increase in disease activity unrelated to underlying ulcerative colitis.

- The MS trials (SUNBEAM⁵ and RADIANCE⁶) were both randomized, double-dummy, active-control phase 3 trials that compared ozanimod 0.92 mg or ozanimod 0.46 mg (equivalent to ozanimod HCl 0.5 mg) with IFN B-1a 30 μ g in patients with relapsing MS (**Figure 2**)
- This safety analysis included 882 patients treated with ozanimod 0.92 mg and 885 patients treated with IFN B-1a

Figure 2. Study design of MS trials (SUNBEAM and RADIANCE)

The incidences of hepatic TEAEs were similar between treatment groups; there were relatively few hepatic-related events (ie, generally asymptomatic laboratory abnormalities) leading to ozanimod discontinuation

	UC (True North)		MS (SUNBEAM/RADIANCE)		UC (True North)		
System organ class ^a Preferred term	Placebo (n=216)	Ozanimod 0.92 mg (n=796)	IFN B-1a 30 µg (n=885)	Ozanimod 0.92 mg (n=882)	TEAEs leading to study treatment discontinuation, n (%)	Placebo (n=216)	Ozanimod 0.92
Hepatobiliary disorders ^b	2 (0.9)	3 (0.4)	10 (1.1)	15 (1.7)	Investigations	0	4 (0.5
Hepatic steatosis	1 (0.5)	0	1 (0.1)	1 (0.1)	ALT increased	0	2 (0.3
Cholelithiasis	0	0	2 (0.2)	1 (0.1)	Hepatic enzyme increased	0	1 (0.1
Steatohepatitis	0	1 (0.1) ^c	0	1 (0.1)	GGT increased	0	1 (0.1
Cholecystitis	0	0	1 (0.1) ^d	1 (0.1) ^d	LFT increased	0	1 (0.1
Hyperbilirubinemia	0	1 (0.1)	1 (0.1)	3 (0.3)		MS (SUNBEAM/RADIANCE)	
Hepatobiliary disease	0	1 (0.1)	0	0	TEAEs leading to study treatment discontinuation, n		
Hypertransaminasemia	0	0	1 (0.1)	1 (0.1)	(%)	IFN B-1a 30 µg (n=885)	Ozanimod 0.92
Hepatitis toxic ^e	0	0	1 (0.1)	2 (0.2)	Hepatobiliary disorders	0	2 (0.2
Cholangitis sclerosing	1 (0.5)	0	0	0	Hepatitis toxic	0	1 (0.1
Gallbladder cholesterolosis	1 (0.5)	0	0	0	Hypertransaminasemia	0	1 (0.1
ivestigations ^b					Investigations	7 (0.8)	9 (1.0
ALT increased	0	27 (3.4)	28 (3.2)	47 (5.3)	ALT increased	3 (0.3)	
GGT increased	0	18 (2.3)	11 (1.2)	40 (4.5)		5 (0.5)	4 (0.5
AST increased	0	7 (0.9)	17 (1.9)	16 (1.8)	GGT increased	0	2 (0.2
Liver function test increased	0	6 (0.8)	2 (0.2)	5 (0.6)	Abnormal LFT	2 (0.2)	1 (0.1
Hepatic enzyme increased	1 (0.5)	6 (0.8)	6 (0.7)	12 (1.4)	AST increased	2 (0.2)	1 (0.1
Blood alkaline phosphatase increased	0	2 (0.3)	0	4 (0.5)	Blood bilirubin increased	0	1 (0.1
Transaminases increased	0	2 (0.3)	5 (0.6)	2 (0.2)	Hepatic enzyme increased	1 (0.1)	1 (0.1
Blood bilirubin increased	0	1 (0.1)	1 (0.1)	7 (0.8)	Transaminases increased	0	1 (0.1

- Clinically relevant hepatic disease, recurrent/chronic infection (eg, hepatitis A, B, or C virus), or history of alcohol abuse within 1 year prior to randomization
- Liver function impairment or persisting elevations of aspartate aminotransferase (AST) or alanine aminotransferase (ALT) >2 x upper limit of normal (ULN) for the UC trial or >1.5 x ULN for the MS trials

Study procedures

- MS (SUNBEAM/RADIANCE): baseline, Month 1, Month 3, and every 3 months thereafter
- If LFT elevations had no apparent alternative cause, ozanimod was permanently discontinued as follows:
- UC (True North):
- ALT or AST >8 x ULN, ALT or AST >5 x ULN with confirmation within 2 weeks, or ALT or AST >3 x ULN and total bilirubin >2 x ULN
- ALT or AST >3 x ULN with fatigue, nausea, vomiting, right upper quadrant pain or
- tenderness, fever, rash, and/or eosinophils >5%
- MS (SUNBEAM/RADIANCE):
- ALT or AST >5 x ULN with confirmation of elevation via retest within 2 weeks
- In the UC and MS trials, a hepatic advisory board consisting of unblinded drug-induced liver injury (DILI) advisors reviewed cases of potential clinical significance
- Drugs can potentially cause severe DILI if they induce elevations that meet Hy's law criteria: ALT or AST $\geq 3 \times$ ULN and bilirubin $> 2 \times$ ULN without cholestasis or other explanation (eg, viral hepatitis, preexisting or acute liver disease, another drug causing the liver injury)¹⁰
- This analysis primarily focused on drug-induced hepatocellular injury data, which are characterized by serum elevations in ALT and AST, rather than drug-induced hepatobiliary injury data, which are characterized by elevations in alkaline phosphatase¹¹

Patients

Presented at American College of Gastroenterology (ACG) 2022; October 21-26, 2022; Charlotte, NC, USA, and Virtual. Previously presented at United European Gastroenterology (UEG) Week 2022; October 8-11, 2022; Vienna, Austria, and Virtual.

Table 3. Incidences of hepatic TEAEs of interest

^aCoded using MedDRA, version 22.1. ^bNot all hepatobiliary disorders or investigations are listed, and patients could have reported ≥1 TEAE. ^cNonalcoholic steatohepatitis. ^dChronic cholecystitis. ^eAll were nonserious and ^aOne patient may have reported ≥ 1 TEAE. led to discontinuation of ozanimod 0.92 mg in 1 patient. ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; IFN, interferon; LFT, liver function test; MS, multiple sclerosis; TEAE, treatment-emergent adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; IFN, interferon; MedDRA, Medical Dictionary for Regulatory Activities; MS, multiple sclerosis; TEAE, treatment-UC. ulcerative colitis. emergent adverse event; UC, ulcerative colitis.

• Key hepatic-related exclusion criteria for the UC and MS trials:

- Persisting elevations of direct bilirubin levels >1.5 x ULN
- Liver function tests (LFTs) were assessed as follows:
- UC (True North): baseline and Weeks 5, 10, 18, 28, 40, and 52
- In the UC and MS trials, patients with elevations in LFTs (ie, ALT and/or AST) $\geq 3 \times$ ULN retested their LFT levels <14 days after the original test
- Upon confirmation of elevation in LFTs, retests were performed weekly until elevated LFTs <3 x ULN or discontinuation criteria for laboratory abnormalities were met</p>

• Baseline patient demographics and clinical characteristics in the UC and MS trials were similar between ozanimod 0.92 mg and its comparators (placebo and IFN 8-1a, respectively) (Table 1) - However, a higher percentage of patients in the MS trials had a baseline total bilirubin >1 x ULN compared with patients in the UC trial

Table 1. Patient demographics and clinical

	UC (Tru	e North)	MS (SUNBEAM/RADIANCE)		
	Inductio	on period			
Characteristic	Placebo (n=216)	Ozanimod 0.92 mg (n=796)	IFN β-1a 30 μg (n=885)	Ozanimod 0.92 mg (n=882)	
Age, y, mean (SD)	41.9 (13.6)	41.7 (13.6)	35.6 (9.1)	35.4 (9.1)	
Sex, n (%)					
Male	143 (66.2)	459 (57.7)	283 (32.0)	306 (34.7)	
Female	73 (33.8)	337 (42.3)	602 (68.0)	576 (65.3)	
Race, n (%)					
White	192 (88.9)	706 (88.7)	875 (98.9)	876 (99.3)	
Asian	17 (7.9)	48 (6.0)	1 (0.1)	1 (0.1)	
Black or African American	4 (1.9)	24 (3.0)	7 (0.8)	5 (0.6)	
Other	3 (1.4)	18 (2.3)	2 (0.2)	0	
Region, n (%)					
Eastern Europe	112 (51.9) ^a	415 (52.1) ^a	795 (89.8)	790 (89.6)	
Western Europe	21 (9.7) ^b	122 (15.3) ^b	NA	NA	
North America	60 (27.8)	187 (23.5)	NA	NA	
Other	23 (10.6) ^c	72 (9.0) ^c	NA	NA	
Rest of the world	NA	NA	90 (10.2) ^d	92 (10.4) ^d	
BMI, kg/m², mean (SD)	25.1 (4.5)	25.6 (5.6) ^e	24.2 (5.0)	24.3 (4.8) ^f	
Time since diagnosis, y, mean (SD)	6.8 (7.0)	7.4 (7.0)	3.7 (4.5)	3.8 (4.7)	
Time since symptom onset, y, mean (SD)	7.6 (7.1)	8.3 (7.5)	6.6 (6.0)	6.9 (6.3)	
Extent of UC disease, n (%)					
Left-sided	134 (62.0)	505 (63.4)	NA	NA	
Extensive	82 (38.0)	291 (36.6)	NA	NA	
Total Mayo score, ^g mean (SD)	8.9 (1.4)	9.0 (1.5)	NA	NA	
ALT >1 x ULN, n (%)	9 (4.2)	47 (5.9)	55 (6.2)	62 (7.0)	
AST >1 x ULN, n (%)	6 (2.8)	24 (3.0)	12 (1.4)	25 (2.8)	
Total bilirubin >1 x ULN, n (%)	1 (0.5)	5 (0.6)	44 (5.0)	35 (4.0)	

^aBelarus, Bulgaria, Croatia, Czech Republic, Georgia, Greece, Hungary, Latvia, Moldova, Poland, Romania, Russia, Serbia, Slovakia, and Ukraine. ^bAustria, Belgium, Germany, Italy, Netherlands, and United Kingdom. Asia, South Africa, and South America. Belgium, Canada, Germany, Greece, Italy, New Zealand, Portugal, South Africa, Spain, Sweden, United Kingdom, and United States. en=794. fn=881. Sum of the baseline rectal bleeding, stool frequency, Physician's Global Assessment, and endoscopy subscores. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; IFN, interferon; MS, multiple sclerosis; NA, not applicable; SD, standard deviation; UC, ulcerative colitis: ULN, upper limit of normal.

LFTs

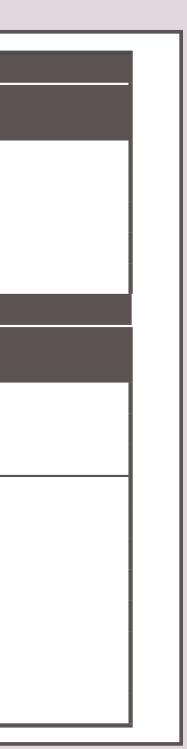
• The percentages of patients in the ozanimod 0.92 mg and comparator groups with elevations in ALT, AST, and bilirubin are shown in **Table 2**

Hy's law criteria and DILI

- UC trial: There were no Hy's law cases in either treatment group
- MS trials: The hepatic advisory board reviewed all cases of concurrent ALT and AST elevations \geq 3 × ULN and bilirubin >2 × ULN (ie, there were 3 none in the IFN B-1a group) and concluded that no cases met Hy's law criteria

Table 4. Hepatic-related TEAEs leading to ozanimod 0.92 mg discontinuation^a

cha	rac	teri	istics


3	cases	in	the	ozanin	nod C	.92	mg	group	and	
n		c n	not l	Hy's lay	w crit	toria	2			

	UC (Tru	e North)	MS (SUNBEAM/RADIANCE)		
Parameter	Placebo (n=216)	Ozanimod 0.92 mg (n=796)	IFN β-1a 30 μg (n=885)	Ozanimod 0.92 mg (n=882)	
Patients with an assessment, n	211	783	879	878	
ALT					
>1 x ULN	21 (10.0)	215 (27.5)	244 (27.8)	373 (42.5)	
≥3 x ULN	1 (0.5)	22 (2.8)	27 (3.1)	48 (5.5)	
≥5 x ULN	1 (0.5)	8 (1.0)	11 (1.3)	14 (1.6)	
≥10 x ULN	0	2 (0.3)	4 (0.5)	4 (0.5)	
AST					
>1 x ULN	16 (7.6)	136 (17.4)	129 (14.7)	185 (21.1)	
≥3 x ULN	0	14 (1.8)	19 (2.2)	9 (1.0)	
≥5 x ULN	0	5 (0.6)	10 (1.1)	5 (0.6)	
≥10 x ULN	0	0	2 (0.2)	4 (0.5)	
Bilirubin					
>1 x ULN	10 (4.7)	32 (4.1)	102 (11.6)	122 (13.9)	
>2 x ULN	1 (0.5)	3 (0.4)	2 (0.2)	14 (1.6)	
>3 x ULN	0	1 (0.1)	0	3 (0.3)	

ALT, alanine aminotransferase; AST, aspartate aminotransferase; IFN, interferon; MS, multiple sclerosis; UC, ulcerative colitis; ULN, upper limit of normal.

Recovery and resolution of hepatic enzyme elevations UC (True North)

- Of ozanimod-treated patients with ALT elevations $\geq 3 \times \text{ULN}$, 19/22 (86.4%) recovered to <3 $\times \text{ULN}$ within 3 months; most recovered while continuing treatment
- Of patients with AST elevations $\geq 3 \times \text{ULN}$, 12/14 (85.7%) ozanimod-treated patients recovered to <3 x ULN within 3 months; most recovered while continuing treatment
- Of patients with bilirubin elevations $\geq 2 \times ULN$, 2/3 (66.7%) ozanimod-treated patients recovered to <2 x ULN in 0.7 months while continuing treatment

Table 2. Maximum postbaseline elevations in ALT, AST, and bilirubin

MS (SUNBEAM/RADIANCE)

- Of patients with ALT elevations $\geq 3 \times ULN$, 41/48 (85.4%) receiving ozanimod 0.92 mg recovered to <3 x ULN within 3 months; most recovered while continuing treatment
- Of patients with AST elevations $\geq 3 \times \text{ULN}$, 5/5 (100%) patients receiving ozanimod 0.92 mg recovered to <3 x ULN while continuing treatment
- All bilirubin elevations >2 x ULN recovered to <2 x ULN while patients continued treatment

Hepatic TEAEs

- In the UC and MS trials, the incidences of symptomatic hepatic TEAEs across treatment groups were generally similar (**Table 3**)
- Most TEAEs were mild to moderate in intensity
- Hepatic-related TEAEs (ie, generally asymptomatic laboratory abnormalities) leading to discontinuation were reported in 4 (0.5%) patients with UC and 11 (1.2%) patients with MS receiving ozanimod 0.92 mg (Table 4)
- No serious hepatic TEAEs occurred in either treatment group in the UC trial; in the MS trials, there were none in the ozanimod 0.92 mg group, but 3 occurred with IFN 8-1a (ie, cholelithiasis, chronic cholecystitis, and increased hepatic enzymes)
- No Hy's law cases or severe drug-induced hepatocellular injury occurred in patients receiving ozanimod in the UC and MS trials

Conclusions

- In this analysis of phase 3 UC and MS trials with ozanimod, elevations of AST, ALT, and bilirubin were transient, were usually asymptomatic, and generally resolved without study drug discontinuation
- In the UC and MS trials, the incidences of hepatic TEAEs were similar between treatment groups, and therapy discontinuations due to hepatic TEAEs were low
- No serious hepatic TEAEs occurred with ozanimod 0.92 mg in the UC and MS trials
- No Hy's law cases or severe DILI occurred with ozanimod 0.92 mg in the UC and MS trials

References

1. Scott FL et al. Br J Pharmacol. 2016;173:1778-1792. 2. Zeposia (ozanimod) [package insert]. Princeton, NJ: Bristol Myers Squibb; April 2022. 3. Zeposia (ozanimod) [summary of product characteristics]. Utrecht, Netherlands: Celgene Distribution B.V.; December 2021. 4. Sandborn WJ et al. N Engl J Med. 2021;384:1280-1291. 5. Comi G et al. Lancet Neurol. 2019;18:1009-1020. 6. Cohen JA et al. Lancet Neurol. 2019;18:1021-1033. 7. Joni SS et al. Int J Physiol Pathophysiol Pharmacol. 2020;12:88-94. 8. Kappos L et al. Lancet. 2018;391:1263-1273. 9. Kappos L et al. JAMA *Neurol*. 2021;78:558-567. **10.** US Food and Drug Administration. Guidance for industry–drug-induced liver injury: premarketing clinical evaluation. Accessed July 19, 2022. https://www.fda.gov/media/116737/download. 11. Aubrecht J et al. Genome Med. 2013;5:85.

Acknowledgments

- This study was sponsored by Bristol Myers Squibb, Princeton, NJ, USA
- All authors contributed to and approved this presentation
- Writing and editorial assistance was provided by Anny Wu, PharmD, of Peloton Advantage, LLC, an OPEN Health company, and was funded by Bristol Myers Squibb

Disclosures

- DTR: received grant support from Takeda; consulted for AbbVie, AltruBio, Arena Pharmaceuticals, Bristol Myers Squibb, Eli Lilly, Genentech/Roche, Gilead, Iterative Scopes, Janssen, Pfizer, Prometheus Biosciences, Takeda, and Techlab.
- FC: received research support from Sanofi and Takeda; consulted for Arena, Celgene, GlaxoSmithKline, and Takeda.
- JC: received personal compensation for consulting from Biogen, Bristol Myers Squibb, Convelo, Genentech, Janssen, NervGen, Novartis, and PSI; is a speaker for H3 Communications; is an editor for *Multiple Sclerosis Journal*.
- SZ: received fees for consulting and/or speaking from AbbVie, BioMarin, Gilead, Intercept, Janssen, Merck/MSD, and Sobi.
- CC, SA, LC, and JKS: employees and/or shareholders of Bristol Myers Squibb.
- AD: received fees for participation in clinical trials, review activities (eg. data and safety monitoring boards), statistical analysis, and endpoint committees from AbbVie, Celgene/Bristol Myers Squibb, Falk, Gilead, Janssen, and Pfizer; received consultancy fees from AbbVie, Amgen, Biogen, Boehringer Ingelheim, Celgene/Bristol Myers Squibb, Eli Lilly, Falk, Ferring, Fresenius Kabi, Galapagos, Gilead, Janssen, MSD, Pfizer, Pharmacosmos, Roche/Genentech, Sandoz/Hexal, Takeda, Tillotts, and Vifor; received payment from lectures, including service on speaker bureaus, from AbbVie, Eli Lilly, Falk Foundation, Ferring, Gilead/Galapagos, MSD, Janssen, Pfizer, Takeda, Tillotts, and Vifor; received payment for development of educational presentations from Ferring and Tillotts.