Immunogenicity and Safety of a Virus-Like Particle (VLP) Protein Subunit SARS-CoV-2 Vaccine in Adults: A Phase 1/2 Study

Robert Scott, Susan Thackwray, Nicholas Hourgettes, Huub Gelderblom, Ajoke Sobanjo-ter Meulen, Wasima Rida, Niranjan Kanesa-thasan University of the Sunshine Coast, Brisbane, Australia; Icosavax Inc, Seattle WA

INTRODUCTION

- More than two years after the start of the pandemic, **COVID-19** continues to cause substantial morbidity and mortality worldwide
- Continued vaccination of groups at high-risk of severe COVID-19 is likely to be needed in future years to boost immunity
- Virus-like particle (VLP) vaccines mimic the structure of real viruses, potentially resulting in a superior immune response compared with soluble antigens
- In this phase 1/2 study, we evaluated the immunogenicity and safety of a VLP protein subunit SARS-CoV-2 vaccine (IVX-411) with or without Segirus Inc.'s proprietary squalene-based oil-in-water emulsion adjuvant MF59® (MF59) in adults aged 18-69

METHODS

 Phase 1 included 84 SARS-CoV-2-naïve subjects whereas Phase 2 included 84 previously vaccinated subjects*

Figure 1. Study design

- Primary endpoints
- Solicited (to Day 7) and unsolicited adverse events (AEs)
- Neutralizing antibody (Ab) titers
- Spike protein-specific IgG Ab titers
- Other endpoints (ongoing)
- Serious AEs (SAEs), medically-attended AEs (MAAEs), AEs of special interest (AESIs), and AEs leading to study withdrawal up to Day 210
- Immunogenicity up to Day 210

This material is based on research funded by (or in part by) the Bill & Melinda Gates Foundation. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation

DEMOGRAPHICS

 Demographics were similar between the IVX-411 and placebo groups in both study phases

SAFETY

- Local reactogenicity was mild-to-moderate and higher with increased doses or addition of adjuvant (Figure 2); rates of systemic AEs were similar to placebo in both phases (Figure 3)
- No AESIs or AEs leading to study withdrawal were reported
- Four SAEs were reported, none were considered related to vaccination and all began after Day 21 following vaccination
- Unsolicited AEs were mostly mild and rates were similar to placebo in both phases

Figure 2. Local AEs within 7 days of any dose

Figure 3. Systemic AEs within 7 days of any dose

RESULTS

IMMUNOGENICITY

- A limited dose-effect was seen in SARS-CoV-2-naïve subjects, with significantly higher antibody titers in the groups receiving adjuvant. Across groups, titers were similar or lower than human convalescent sera (Figure 4)
- No clear dose or adjuvant effect was seen in previously vaccinated subjects, with titers rising from baseline levels across all dose/adjuvant combinations (Figure 5)

Figure 4. Neutralizing and spike IgG Abs in SARS-CoV-2-naïve subjects

Figure 5. Neutralizing and spike IgG Abs in previously vaccinated subjects

Similar findings were observed across tested variants of concern (beta, delta, and omicron), with up to 7-fold rises from baseline titers against omicron (Figures 6 and 7)

Figure 6. Neutralizing Ab titers against wild type and omicron -**SARS-CoV-2-naïve**

Figure 7. Neutralizing Ab titers against wild type and omicron – **Previously vaccinated**

CONCLUSIONS

- The vaccine demonstrated acceptable tolerability profiles in SARS-CoV-2-naïve and previously vaccinated subjects
- Immunogenicity was observed in both primary and booster vaccination, with a clear adjuvant effect in SARS-CoV-2-naïve subjects
- Immune responses were seen across variants of concern in both study phases
- Immunogenicity was lower than expected based on previous studies further investigations showed this to be due to antigen instability in the receptor binding domain and unique to this vaccine candidate
- Future plans include evolution of antigen design for incorporation into a potential bivalent COVID-19 candidate vaccine and other combination **VLP** vaccines