

## **INTRODUCTION**

- Staphylococcus aureus colonization of skin and mucosa contributes to its pathogenesis [1, 2].
- *S. aureus* decolonization reduces bloodstream infections in ICU patients [3].
- Decolonization in acute care settings has not shown a similar benefit [4].
- We describe a targeted decolonization protocol implemented at a large academic hospital across acute and intensive care settings.
- We hypothesized that decolonization would result in decreased incidence of invasive *S. aureus* infections, as well as 30-day readmission and 30-day mortality rates.

#### **METHODS**

- Medicine, Oncology, Transplant, and Intensive Care units implemented test-andtreat approaches to *S. aureus* colonization between 2018 and 2021.
- All patients underwent active surveillance for *Staph aureus* colonization at the time of admission and during changes in level of care.
- Colonized patients identified through active surveillance received 5 days of chlorhexidine 2% applied to the body and mupirocin applied to the nares.
- Patients that received at least 3 days of decolonization treatment were compared against those that received no or minimal decolonization.
- Primary outcome was any *S. aureus* invasive infection occurring 3 or more days after admission date (including blood, respiratory tract, urine, deep tissue, or wound culture).
- <u>Secondary outcomes</u> were 30-day mortality and 30-day readmission.

|                           | Total               | Not colonized          | Colonized, not decolonized | Received decolonization | P-value |
|---------------------------|---------------------|------------------------|----------------------------|-------------------------|---------|
| Total                     | 26,303              | 20,290                 | 4090                       | 1918                    |         |
| Age [median, IQR]         | 69 [57 <i>,</i> 80] | 69.00 [57 <i>,</i> 80] | 68 [55 <i>,</i> 80]        | 66 [54, 77]             | < 0.001 |
| Sex                       |                     |                        |                            |                         |         |
| Female                    | 11,749 (44.7)       | 9270 (45.7)            | 1699 (41.5)                | 779 (40.6)              | < 0.001 |
| Male                      | 14,554 (55.3)       | 11,020 (54.3)          | 2391 (58.5)                | 1139 (59.4)             |         |
| COVID status              |                     |                        |                            |                         |         |
| Pre-COVID                 | 11,761 (44.7)       | 8935 (44.0)            | 2055 (50.2)                | 771 (40.2)              | < 0.001 |
| Negative                  | 12,222 (46.5)       | 9552 (47.1)            | 1710 (41.8)                | 957 (49.9)              |         |
| Positive                  | 2320 (8.8)          | 1803 (8.9)             | 325 (7.9)                  | 190 (9.9)               |         |
| Comorbidities             |                     |                        |                            |                         |         |
| Cardiovascular            | 20,343 (77.3)       | 15,567 (76.7)          | 3209 (78.5)                | 1562 (81.4)             | < 0.001 |
| Pulmonary diseases        | 9638 (36.6)         | 7414 (36.5)            | 1467 (35.9)                | 757 (39.5)              | 0.021   |
| Diabetes                  | 9787 (37.2)         | 7452 (36.7)            | 1569 (38.4)                | 765 (39.9)              | 0.006   |
| Cancer                    | 4447 (16.9)         | 3574 (17.6)            | 541 (13.2)                 | 332 (17.3)              | < 0.001 |
| Rheumatologic             | 1564 (5.9)          | 1199 (5.9)             | 238 (5.8)                  | 127 (6.6)               | 0.421   |
| Obesity                   | 8730 (33.2)         | 6730 (33.2)            | 1321 (32.3)                | 677 (35.3)              | 0.070   |
| Length of stay (days)     | 8 [6, 14]           | 8 [6, 13]              | 7 [6, 11]                  | 13 [9, 21]              | < 0.001 |
| Prior healthcare exposure |                     |                        |                            |                         |         |
| Admission last 90 days    | 7610 (28.9)         | 6011 (29.6)            | 1140 (27.9)                | 459 (23.9)              | < 0.001 |
| Transfer from facility    | 1730 (6.6)          | 1330 (6.6)             | 248 (6.1)                  | 152 (7.9)               | 0.024   |
| Level of care             |                     |                        |                            |                         |         |
| Acute care                | 22,888 (87.0)       | 17,696 (87.2)          | 3698 (90.4)                | 1491 (77.7)             | < 0.001 |
| Intensive care            | 3415 (13.0)         | 2594 (12.8)            | 392 (9.6)                  | 427 (22.3)              |         |
| Outcomes                  |                     |                        |                            |                         |         |
| Mortality at 30 days      | 2463 (9.4)          | 1852 (9.1)             | 389 (9.5)                  | 221 (11.5)              | 0.003   |
| Readmission at 30 days    | 6670 (25.4)         | 5129 (25.3)            | 950 (23.2)                 | 591 (30.8)              | < 0.001 |

#### **Table 1.** Characteristics of admitted patients by colonization and decolonization status

# Screening and Targeted Staphylococcus aureus Decolonization of Acute and Intensive Care Patients and Invasive Infections in an Academic Medical Center

David J. DiTullio, MD PhD<sup>1</sup>, Courtney Takats, MPH<sup>2</sup>, and Sarah Hochman, MD<sup>1,3</sup> <sup>1</sup>Department of Medicine and <sup>2</sup>Department of Microbiology, New York University Grossman School of Medicine; <sup>3</sup>Department of Infection Prevention and Control, New York University Langone Health

#### RESULTS

- A total of 6,008 out of 26,303 patients were colonized with MSSA or MRSA. Clinical characteristics and demographics are shown in Table 1.
- Data on primary outcomes and rates of invasive *S. aureus* infections (onset at least 2 days after admission) are shown in Table 2.
- Invasive *S. aureus* infections (onset at least 2 days after admission) were seen in 654 (2.5%) of screened patients.
- Decolonization rates among colonized patients increased over time, while invasive infections by decolonization were similar (Figs. 1, 2).

**Table 2.** Evaluation of primary and secondary outcomes

|                      |                   |               | · / · · · · · · · · · · · · · · · · · · |                         |         |  |  |  |
|----------------------|-------------------|---------------|-----------------------------------------|-------------------------|---------|--|--|--|
|                      | Total<br>screened | Not colonized | Colonized, not decolonized              | Received decolonization | P-value |  |  |  |
| Total                | 26298             | 20290         | 4090                                    | 1918                    |         |  |  |  |
| Primary outcome      |                   |               |                                         |                         |         |  |  |  |
| Number of infections |                   |               |                                         |                         |         |  |  |  |
| 0                    | 25644 (97.5)      | 20030 (98.7)  | 3861 (94.4)                             | 1753 (91.4)             | < 0.001 |  |  |  |
| 1                    | 357 (1.4)         | 146 (0.7)     | 148 (3.6)                               | 63 (3.3)                |         |  |  |  |
| 2                    | 109 (0.4)         | 45 (0.2)      | 45 (1.1)                                | 19 (1.0)                |         |  |  |  |
| 3 or more            | 188 (0.7)         | 69 (0.3)      | 36 (0.9)                                | 83 (4.3)                |         |  |  |  |
| Site of infection    |                   |               |                                         |                         |         |  |  |  |
| Bacteremia           | 87 (0.3)          | 27 (0.1)      | 28 (0.7)                                | 32 (1.7)                | < 0.001 |  |  |  |
| Pulmonary            | 312 (1.2)         | 117 (0.6)     | 107 (2.6)                               | 88 (4.6)                | < 0.001 |  |  |  |
| Urine                | 18 (0.1)          | 5 (0.0)       | 8 (0.2)                                 | 5 (0.3)                 | < 0.001 |  |  |  |
| Wound/surgical       | 84 (0.3)          | 35 (0.2)      | 31 (0.8)                                | 18 (0.9)                | < 0.001 |  |  |  |
| Other                | 206 (0.8)         | 92 (0.5)      | 65 (1.6)                                | 49 (2.6)                | < 0.001 |  |  |  |
| Days to infection    |                   |               |                                         |                         |         |  |  |  |
| 3-5                  | 351 (53.7)        | 124 (47.7)    | 147 (64.2)                              | 80 (48.5)               | 0.003   |  |  |  |
| 6-7                  | 87 (13.3)         | 41 (15.8)     | 24 (10.5)                               | 22 (13.3)               |         |  |  |  |
| 8 or more            | 216 (33.0)        | 95 (36.5)     | 58 (25.3)                               | 63 (38.2)               |         |  |  |  |
| Secondary outcomes   |                   |               |                                         |                         |         |  |  |  |
| 30-day mortality     | 2462 (9.4)        | 1852 (9.1)    | 389 (9.5)                               | 221 (11.5)              | 0.003   |  |  |  |
| 30-day readmission   | 6614 (25.2)       | 5120 (25.2)   | 920 (22.5)                              | 574 (29.9)              | < 0.001 |  |  |  |



#### Fig 3. Invasive infections by site and colonization status

 
 Table 3. Multivariate
regression of factors associated with primary and secondary outcomes

#### RESULTS





|                                  |             | Invasive infection |         | <b>30-day readmission</b> |         | 30-day n              |  |
|----------------------------------|-------------|--------------------|---------|---------------------------|---------|-----------------------|--|
|                                  | Total (%)   | OR (95% CI)        | P-value | OR (95% CI)               | P-value | OR (95% C             |  |
| Total                            | 6008        |                    |         |                           |         |                       |  |
| Age (per year)                   | 67 [54, 79] | 0.99 (0.99, 1.00)  | 0.055   | 1.00 (1.00, 1.00)         | 0.922   | 1.02 (1.02, 1         |  |
| Sex: male                        |             | 1.69 (1.35, 2.14)  | <0.001  | 1.07 (0.95, 1.21)         | 0.260   | 1.22 (1.02, 1         |  |
| COVID status (ref:<br>pre-COVID) |             |                    |         |                           |         |                       |  |
| Negative                         | 2667 (44.4) | 0.84 (0.67, 1.05)  | 0.121   |                           |         |                       |  |
| Positive                         | 515 (8.6)   | 0.96 (0.65, 1.38)  | 0.811   |                           |         |                       |  |
| Comorbidities                    |             |                    |         |                           |         |                       |  |
| Cardiovascular                   | 4771 (79.4) | 1.75 (1.27, 2.47)  | 0.001   | 1.26 (1.08, 1.48)         | 0.004   | 1.70 (1.30, 2         |  |
| Pulmonary                        | 2224 (37.0) |                    |         | 1.09 (0.96, 1.23)         | 0.180   | 1.44 (1.21, 1         |  |
| Diabetes                         | 2334 (38.8) | 1.23 (0.90, 1.52)  | 0.065   | 1.13 (1.00, 1.27)         | 0.055   |                       |  |
| Cancer                           | 873 (14.5)  |                    |         | 1.38 (1.18, 1.62)         | <0.001  | 3.54 (2.89 <i>,</i> 4 |  |
| Rheumatologic                    | 365 (6.1)   |                    |         |                           |         |                       |  |
| Obesity                          | 1998 (33.3) |                    |         |                           |         |                       |  |
| Length of stay                   | 8 [6, 14]   | 1.03 (1.02, 1.03)  | <0.001  | 1.01 (1.01, 1.02)         | <0.001  | 1.01 (1.01, 1         |  |
| Level of care: ICU               | 821 (13.7)  | 1.59 (1.32, 1.90)  | <0.001  | 1.12 (1.00, 1.27)         | 0.050   | 2.12 (1.82, 2         |  |
| Prior admission last<br>90 days  | 1599 (26.6) |                    |         | 1.58 (1.39, 1.80)         | <0.001  | 1.23 (1.02, 1         |  |
| Transfer from facility           | 400 (6.7)   |                    |         |                           |         | 1.23 (0.90, 1         |  |
| Decolonized                      | 1918 (31.9) | 0.98 (0.77, 1.24)  | 0.886   | 1.27 (1.12, 1.45)         | <0.001  | 0.92 (0.76, 1         |  |



### **RESULTS** (cont.)

#### Multivariate regression

- Each variable of interest was evaluated for association with outcomes after controlling for age, sex, and length of stay.
- Variables significant in these models were evaluated with an adjusted model to determine overall associations.
- After controlling for confounding factors, decolonization was not significantly associated with incident invasive infections (Table 4, p = 0.886).
- There was a significant association between decolonization and 30-day readmission but not 30-day mortality (p < 0.001, p = 0.462, respectively).

# CONCLUSIONS

- We report on a universal *S. aureus* screening program; of all eligible patients screened, 16.6% were positive for MSSA and 6.3% for MRSA.
- As expected, colonization was significantly correlated with risk of invasive *S. aureus* infection.
- Decolonization was not associated with changes in the primary outcome of invasive infection, nor secondary outcome of mortality.
- It is unclear what drives the association between decolonization and readmission, given the lack of association with invasive infections.
- Further investigation is needed to assess what factors may affect limited efficacy of decolonization.
- Subsequent analyses will evaluate for factors impacting decolonization efficacy, such as time from screen to implementation.
- We will also investigate other endpoints such as antibiotic usage, time in ICU, and ventilator days.

### REFERENCES

- Eko KE, Forshey BM, Carrel M, et al. Antimicrob Resist Infect Control. 2015; 4(1): 10. Clarridge JE, Harrington AT, Roberts MC, et al. J Clin Microbiol. 2013; 51(1): 224-231
- Huang SS, Septimus E, Kleinman K, et al. N Engl J Med. 2013; 368(24): 2255-2265.
- Huang SS, Septimus E, Kleinman K, *et al. Lancet.* 2019; 393(10177): 1205-1215.

# ACKNOWLEDGEMENTS

We would like to thank the INTREPID program at NYU for assistance in project design and analysis.

Not decolonized Received decolonization

ecolonization status Not decolonized Received decolonization

#### ortality P-value .03) <0.001 0.029 46)

- 2.24) <0.001 L.72) <0.001 < 0.001 .31)
- .02) <0.001 .47) <0.001 L.49) 0.032 .67) 0.175 L.12) 0.462