

Evaluation of Meropenem-Vaborbactam Susceptibility and Underlying Resistance Mechanisms among Clinical KPC-producing Klebsiella pneumoniae

Mohamad Yasmin¹, Steven H. Marshall¹, Liang Chen², Daniel D. Rhoads³, Michael Jacobs³, Laura Rojas^{1,4}, Federico Perez⁵, Andrea Hujer¹, Barry N. Kreiswirth², and Robert A. Bonomo^{1,5,6,7,8}

(1) Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH (2) Hackensack Meridian School of Medicine, Nutley, NJ (3) Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH (4) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleveland, OH (6) Department of Medicine, Case Western Reserve University, Cleve of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH (8) Case Western Reserve University - Cleveland Veterans Affairs Medical Center, Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH

Background

- Meropenem-vaborbactam (MV) is the first carbapenem/ β lactamase inhibitor combination developed to restore meropenem susceptibility against KPC-producing carbapenem-resistant *Enterobacterales* (CRE).
- Vaborbactam (VAB) potently inhibits Ambler class A and C β -lactamases by reversible covalent binding of boronate to serine side chains of β -lactamases.
- Resistance to MV in non-metallo- β -lactamase (MBL) producing *Klebsiella pneumoniae* (KP) isolates has been described but remains rare.
- We sought to identify the major molecular mechanisms associated with MV resistance in KPC-producing KP (KPC-*KP*) isolates.

Methods

- Clinical isolates with elevated MV minimum inhibitory concentrations (MICs) were identified by the consult service.
- Additional clinical isolates with mutations in *ompK35* or *ompK36* genes were selected from a historic database.
- Isolates with MBL or OXA-48-like genes were excluded.
- Controls were comprised of MV susceptible KPC-*KP* isolates.
- MICs determination was done using Sensititre automated broth microdilution (BMD) according to CLSI.
- VAB and avibactam concentrations were held at $8 \mu g/ml$ and 4 μ g/ml, respectively.
- Whole genome sequencing (WGS) was performed on all isolates. Genome libraries were prepared using Illumina Nextera XT and sequencing was performed on MiSeq and MinION.

Results

- A total 119 KPC-*KP* isolates were included.
- All isolates were resistant to meropenem.
- 21 KPC-*KP* with elevated MV MICs were identified.
- All MV resistant isolates harbored mutations in ompK36 genes.
- Glycine/aspartate (GD 134-135) insertion, premature stop codon in *ompK36* genes, and concomitantly elevated $bla_{\rm KPC}$ copy number were predominant among MV resistant isolates.
- No insertion elements in *ompK36* gene promoter • region were found.
- Two MV resistant isolates exhibited unique mutations in $bla_{\rm KPC}$ and envZ genes.

Strain	Year	β-lactamase genes	MLST	Outer membrane porin			Estimated bla _{KPC} copy	MIC (µg/ml)				Other mutations
				ompK35	ompK36	ompK37		MEM	MVB	CFD	CZA	
1	2012	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.79	>64	2/8	0.5	1/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
2	2012	bla_{KPC-2} , $bla_{SHV-182}$, bla_{TEM-1A} , bla_{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	5.67	>64	>16/8	8	2/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
3	2018	$bla_{\rm KPC-2}$, $bla_{\rm SHV-12}^{\alpha}$	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	5.09	>64	>16/8	2	8/4	envZ (A225V)
4	2014	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	GD	K251*	0.97	>64	>16/8	0.5	1/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
5	2019	bla _{SHV-99,} bla _{CMY-2}	ST323	WT	aa64*	No FS or stop codons	N/A	>64	8/8	4	4/4	个 <i>bla_{CMY-2}</i> copy 15X; ramR(K194 [*])
6	2019	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.67	>64	>16/8	2	8/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
7	2018	bla _{KPC-2} , bla _{SHV-182} ,bla _{TEM-122,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	No FS or stop codons	1.47	>64	4/8	0.24	1/4	No mutations
8	2013	bla _{KPC-2} , bla _{SHV-182} , bla _{TEM-1A,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	11.63	>64	>16/8	0.12	1/4	bla _{shv} (L35Q)
9	2014	bla _{KPC-2} , bla _{SHV-12} , bla _{TEM-1A,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	0.86	>64	4/8	4	1/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
10	2019	bla _{KPC-2} , bla _{SHV-182}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.29	>64	8/8	4	0.12/4	bla _{SHV} (L35Q)
11	2018	bla _{OXA-232} , bla _{OXA-1} , bla _{SHV-106} , bla _{TEM-14} , bla _{CTX-M-15}	ST2096	WT	GD, L312*	No FS or stop codons	N/A	>64	>16/8	1	4/4	ramR (K194*)
12	2013	bla _{KPC-2} , bla _{SHV-182} bla _{TEM-1A,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.42	>64	2/8	0.25	1/4	ramR (FS 111-113insP and aa159*); blaSHV(L35Q)
13	2013	bla _{KPC-2} , bla _{SHV-182}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	5.18	>64	>16/8	0.12	1/4	<i>bla</i> _{SHV} (L35Q)
14	2018	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	8.14	>64	>16/8	1	4/4	<i>bla_{KPC}</i> (S274N); bla _{SHV} (G238S;E240K;L35Q)
15	2013	bla _{KPC-2} , bla _{SHV-12} , bla _{TEM-1A,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.31	>64	>16/8	0.5	0.5/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
16	2013	bla_{KPC-2} , bla_{SHV-12} , bla_{TEM-1A} , bla_{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	2.43	>64	8/8	8	4/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
17	2018	bla _{KPC-2}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	1.6	>64	8/8	0.06	4/4	<i>bla</i> _{SHV} (L35Q)
18	2013	bla _{KPC-2} , bla _{SHV-12} , bla _{TEM-1A,} bla _{OXA-9}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	2	>64	2/8	2	0.25/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
19	2015	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	WT	FS: G240insP, K251*	0.76	>64	>16/8	4	1.5/4	<i>bla_{shv}</i> (G238S; E240K; L35Q)
20	2018	bla _{KPC-2} , bla _{SHV-12}	ST258	FS 42insG, aa89*	GD	FS: G240insP, K251*	2.07	>64	>16/8	N/A	4/4	<i>bla_{shv}</i> (G238S;E240K;L35Q)
21	2015	bla _{KPC-4} , bla _{SHV-164}	ST76	aa64*	aa83*	No FS or stop codons	41.87	>64	8/8	16	16/4	ramR (K194 ^{*)} ; KPC-4 (V240G; P104R; W105G)

Table. Whole genome sequencing of KPC-*KP* isolates with elevated MV MICs

Conclusion

- MV resistant KPC-*KP* isolates were reliably analyzed using WGS to reveal the contribution of *omp* gene mutations and bla_{KPC} copy number to this phenotype.
- Elevated MV MICs were additionally recognized among clinical isolates from a historic database predating MV availability.
- CZA appears to retain activity against these isolates.
- In the absence of MBL production, caution remains warranted with the use of MV empirically against KPC-*KP* due to non- β -lactamase mediated resistance mechanisms.

Results

WT: Wild type *: Premature stop codon aa: amino acid GD: Duplication of Glycine (G134) and Aspartate (D135) FS: Frameshift ins: insertion MEM: meropenem; MVB: meropenem-vaborbactam; CZA: ceftazidime-avibactam CFD: cefiderocol

Key – Abbreviations

 α : Truncated at nodes 14 and 76, partial genotype consistent with bla_{SHV-12}

Contact info Mohamad Yasmin, M.D mxy312@case.edu