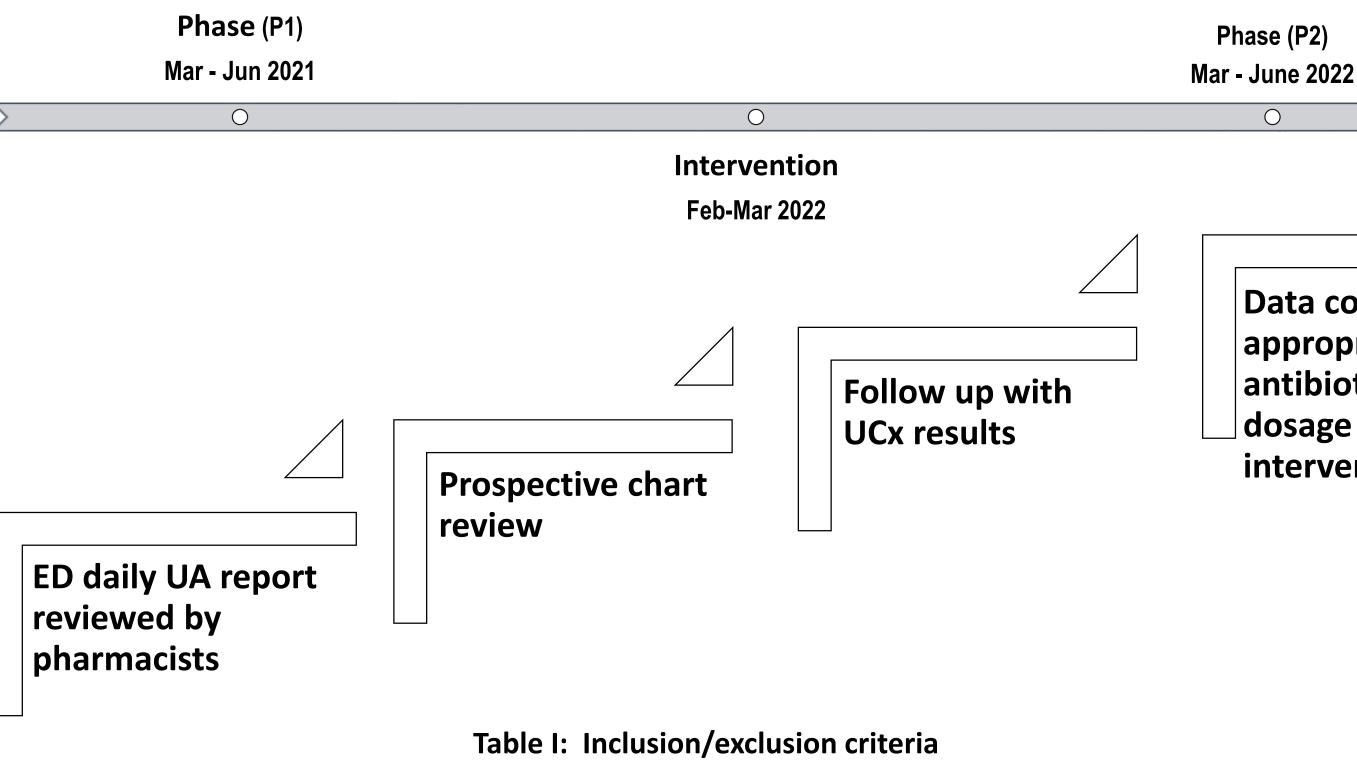
MHS

Military Health System

health.mil

BACKGROUND

- The Joint Commission Standards mandating Antimicrobial Stewardship in outpatient settings took effect in January 2020¹.
- In the United States, urinary tract infections (UTI) impact more than 10 million people yearly².
- With the increasing interest in ambulatory stewardship, we designed a quasi-experimental study as a quality improvement project to assess guideline-concordant antimicrobial and diagnostic stewardship practices targeting UTI in the Emergency Department (ED) of a Military Treatment Facility.


OBJECTIVES

Primary Objective:

- Assess changes in guideline-concordant practices before-and-after the intervention implementation phase.
- Rate of inappropriate antibiotic selection, dose, frequency and duration of therapy (DOT) Secondary Objectives:
- Diagnostic stewardship: Rate of diagnostic concordance, appropriateness of urine culture (UCx) orders and the downstream effects of inappropriate UCx.
- Rate of contaminated urine sample collection
- Types of pharmacist interventions

METHODS

- Study Design: IRB-approved, Quasi-Experimental (QE), prospective study
- Timeline: Two 3-month data collection periods, Phase 1 (P1) and Phase 2 (P2) including ED encounters that resulted in a urinalysis (UA), UCx, and antibiotics for UTI upon discharge (Figure I &II)
- One-month implementation period occurred between the two phases. Interventions included:
 - Provider education on national guidelines
 - Development of syndrome-specific local protocols
 - Revision of ED order-sets
 - Provision of instructions for midstream urine sample collection

Figure I: Study timeline and P1/P2 methods summary

Inclusion Criteria	Exclusion Criteria
ED encounter	 Peri-procedural
 UA/UCx ordered during ED encounter 	 Complicated UTI requiring specialty consul
 Age > 18 years of age 	 Age < 18 years of age
 Uncomplicated cystitis 	 In-patient admission
 Uncomplicated pyelonephritis 	 Co-infection at another site
 Discharged from the ED with antibiotics 	 Recent (<72 hours) or current antibiotic us
	 UA/UCx for other indications (e.g. sepsis)

Antimicrobial and Diagnostic Stewardship Targeting Urinary Tract Infections in the Emergency Department: A Pharmacist-Driven Quality Improvement Project at a Tertiary Military Treatment Facility

Memar Ayalew PharmD^{1,4}, Hellena Admassu, PharmD, BCPS, MPH^{1,3}, Daniel I. Brooks PhD², Robin C. Williams RN³, Paulette M. Crull, RN³, COL Roseanne A. Ressner, DO^{4,5}

¹Walter Reed National Military Medical Center, Department of Pharmacy, Bethesda, MD, USA, ²Defense Health Agency, Clinical Quality Management Branch, Falls Church, VA, USA, ³Walter Reed National Military Medical Center, Department of Emergency Medicine, Bethesda MD, USA, ⁴Walter Reed National Military Medical Center, Department of Infectious Diseases, Bethesda, MD, USA, ⁵Uniformed Services University, Department of Medicine, Bethesda, MD, USA

RESULTS

Screened: ED Urinalysis (UA)

P1 N = 1781 P2 N = 1602

Diagnostic Stewardship Arm (DSA) UCx ordered by ED provider

P2(n) = 367

Antibiotic Stewardship Arm (ASA) UA + UCx + antibiotics

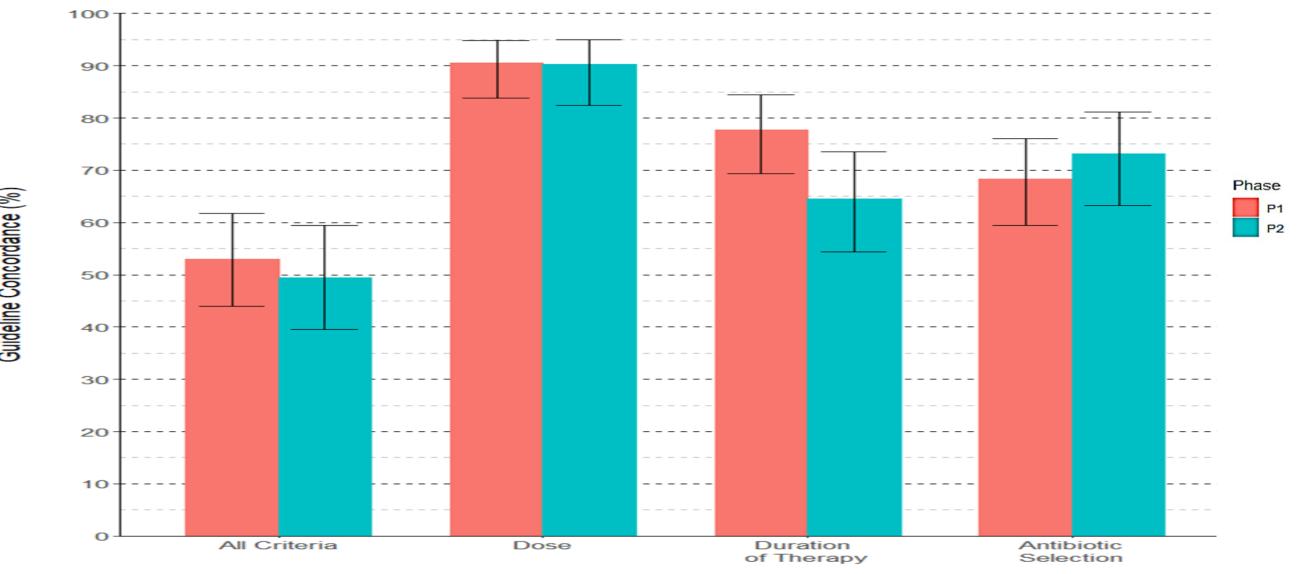

> P1(n) = 117P2 (n) = 93

Table II: Patient demographics

Demographics P2

Demographics, PZ		
Gender	(n)	%
Male	139	37.5
Female	228	62.5
Age group (years)	(n)	%
18-35	77	21
36-65	127	34.6
>65	163	44.4

Figure III: Guideline concordance prescribing trends, P1 vs P2

Antibiotic use by agent or class				
	P1 (%)	P2 (%)		
	N = 117	N = 93		
Nitrofurantoin	39.3	45.2		
Cephalosporins	23.1	21.5		
Fluoroquinolones	19.7	12.9		
TMP/SMX	14.5	10.8		
Fosfomycin	3.4	8.6		
Others	-	1.1		

Data collected on appropriateness of empiric antibiotic selection, DOT, dosage and UCx follow up interventions

> Ity consultation ibiotic use

Disclaimer: The views expressed in this presentation are those of the Department of Defense, Uniformed Services University, or the U.S. Government.

Figure II: Encounters identified based on daily ED urinalysis report

Exclusion Criteria:
No urine culture (UCx)
Age < 18 Yo

Exclusion Criteria Inpatient admission Already on antibiotics Consultants drive decision-making Co-infection

Table III: Characterization of antibiotic selection for the treatment of UTI, P1 vs P2

PRIMARY OUTCOMES

• Inappropriate use:

- Dosage (P1 9.4%, P2 9.7%, p = 1)

SECONDARY OUTCOMES Diagnostic stewardship

- i. Rate of symptom concordance
- ii. Appropriateness of UCx orders
- asymptomatic patients

Clean catch urine collection technique

- bacteriuria.
- exposure include:
- are required to:
- regression to the mean.

RESULTS

• There were no significant improvement in guideline-concordant prescribing or diagnostic practices between P1 and P2 (Figure III).

• Antibiotic selection (P1 31.6% vs P2 26.9%, p = 0.54); attributable to a fluoroquinolone or cephalosporin use as a first-line treatment (Table III).

• DOT (P1 22.2%, P2 35.5%, p = 0.04)

• One-third of patients receiving antibiotics were asymptomatic, a majority of which had a positive UA (P1 68.4%, P2 74.2%).

• Across all P2 encounters, 51.4% of UCx orders were deemed inappropriate

iii. Downstream effects of inappropriate UCx orders

• Antibiotics were initiated in 39.5% patients with a positive UCx due to ED UCx collection in

• Rate of contaminated urine sample: (P1 25.6%, P2 17.2%, p = 0.19)

• The primary pharmacy intervention was discontinuation of therapy (P1 29.1%, P2 39.8%).

DISCUSSION

• We observed there is an overreliance on UA findings resulting in treatment of asymptomatic

• UCx obtained in the setting of low pretest probability leads to the downstream effect of antibiotic initiation by the next care team or provider.

• Unintended consequences associated with inappropriate antibiotics use and duration of

• Increased risk for *Clostridioides difficile* infections

Antibiotic-related adverse effects

• Driving of antimicrobial resistance

• Increased healthcare cost

• Our data suggests continued promotion of standardized diagnostic and prescribing practices

• Discourage UCx orders in asymptomatic patients

Reduce reliance on UA

• Subsequent initiation of antibiotic therapy

• Limitations of our study included: Staff rotation and turnover, gap between P1 and intervention phase, susceptible to study-design-specific biases such as maturation and


CONCLUSIONS

• Education and order-set modification alone are insufficient for a lasting impact on prescribing practices especially where there is a high rate of provider turnover.

• An EMR with embedded clinical tools such as alert-based decision support capabilities and active involvement of clinical pharmacists are likely necessary to make a sustained impact in curbing inappropriate treatment of asymptomatic bacteriuria.

REFERENCES

Joint Commission. Antimicrobial Stewardship in Ambulatory Health Care. R3 Report Issue 23, June 20, 2019 Claeys, K, Trautner B, Leekha S, et al. Optimal Urine Culture Diagnostic Stewardship Practice-Results from a Expert Modified-Delphi Procedure. *Clinical Infectious Disease*. 2022;75(3):382–9

