Frequency of Carbapenemases in United States Hospitals (2016–2020) and Activity of Meropenem-Vaborbactam and **Comparator Agents Tested Against These Isolates**

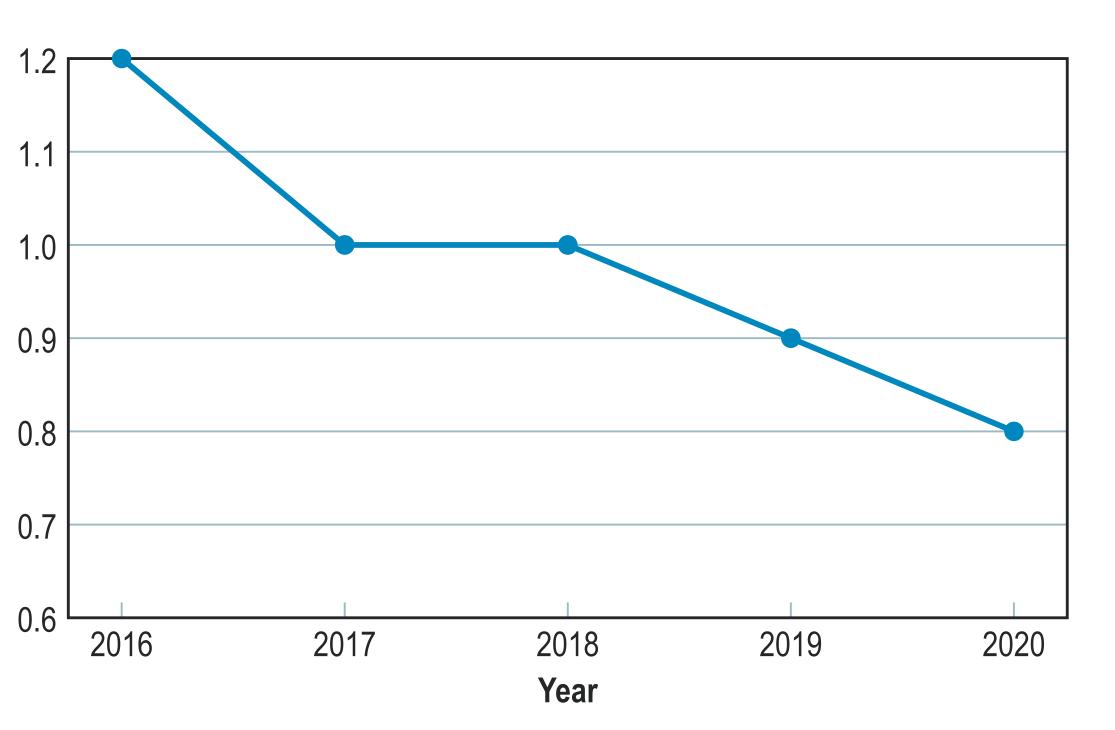
Mariana Castanheira, Valerie Kantro, Cory M. Hubler, Rodrigo E. Mendes, Dee Shortridge JMI Laboratories, North Liberty, Iowa, USA

Introduction

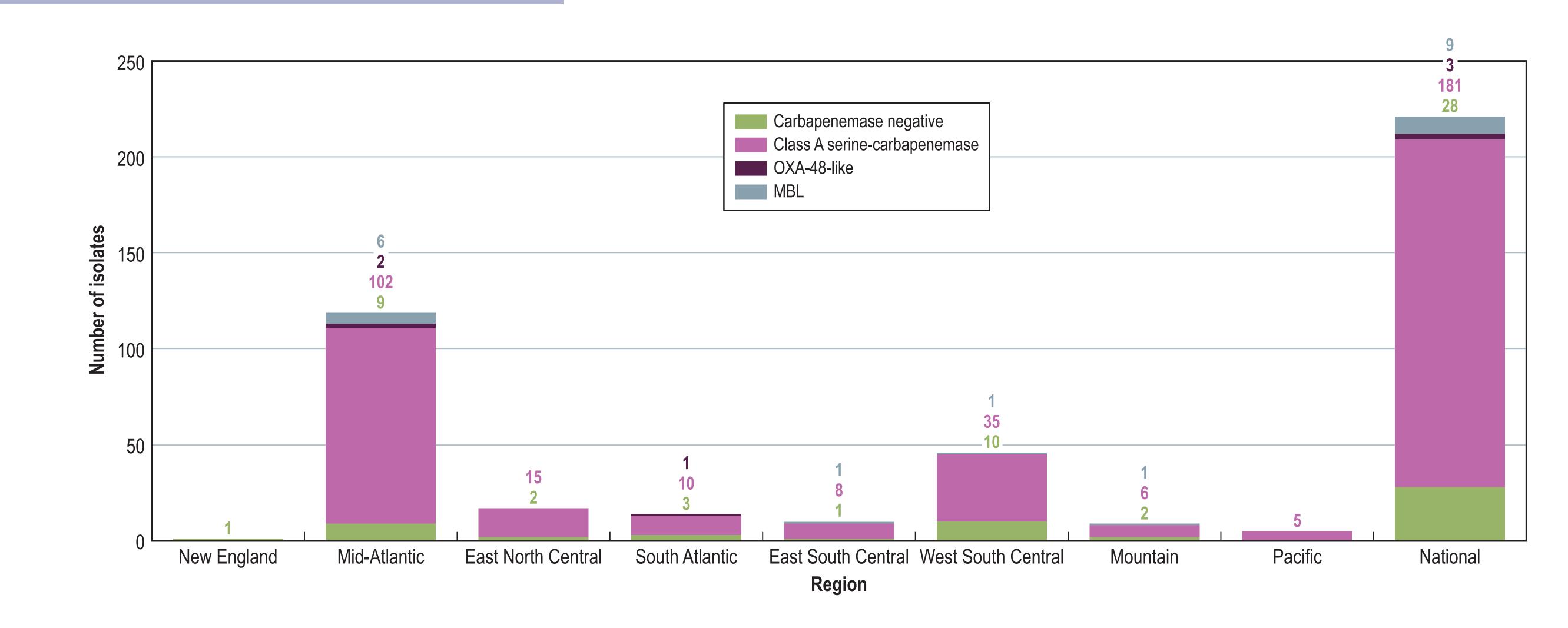
- The global dissemination of carbapenemase-producing Enterobacterales (CPE) poses a threat to human health and has been highlighted as an urgent threat pathogen by the Centers for Disease Control and Prevention (CDC).
- In a recent study, only 148 of 256 (57.8%) patients with CRE infections received empiric therapy containing at least one antimicrobial agent active against these organisms (Alexander et al.).
- Only 83 subjects (32.4%) received empiric coverage with agents that had in vitro activity against the index CRE isolate.
- Across all cases, 69 different regimens were used that were comprised of single or combination therapy with up to 4 agents.
- We used SENTRY Antimicrobial Surveillance Program data to evaluate the prevalence of carbapenemase enzymes among carbapenem-resistant Enterobacterales (CRE) isolates collected in US hospitals.
- Additionally, we analyzed the activity of meropenem-vaborbactam and comparators against these isolates.

Materials and Methods

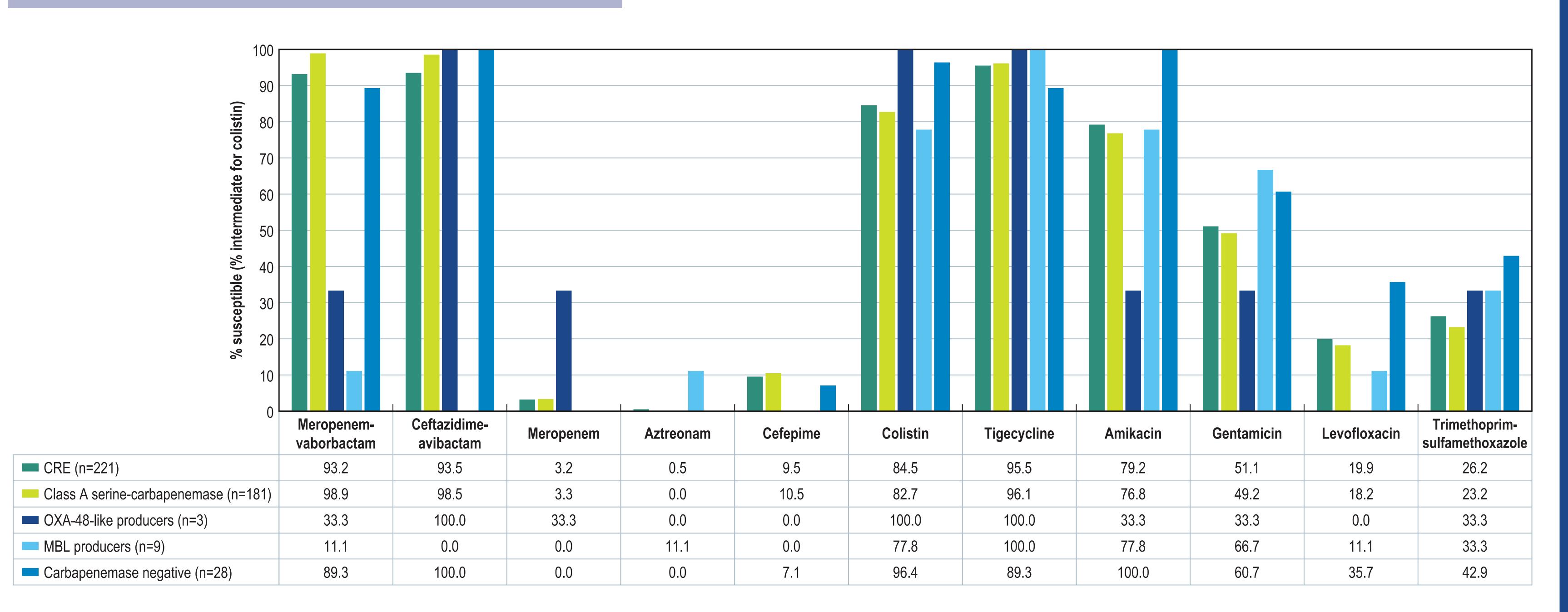
- A total of 22,725 Enterobacterales isolates were consecutively collected in 34 US hospitals located in 9 Census Divisions from 2016 to 2020.
- Only 1 isolate per patient episode was included.
- Isolates were susceptibility tested against meropenem-vaborbactam, ceftazidimeavibactam, and other comparator agents using the reference broth microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI) M07 (2018) and M100 (2022) documents.
- Vaborbactam was tested at a fixed concentration of 8 mg/L.
- Avibactam was tested at a fixed concentration of 4 mg/L.
- Quality control (QC) was performed according to the CLSI M100 (2022) criteria. All QC MIC results were within acceptable ranges.
- Categorical interpretations for all agents were those criteria found in the CLSI M100 (2022) or the US Food and Drug Administration (FDA) website.
- CRE isolates resistant to imipenem or meropenem were submitted to whole genome sequencing and data analysis for the detection of β -lactamases.
- Only meropenem was used for indole-positive Protease due to intrinsically elevated imipenem MIC values.
- Whole genome sequencing was performed on a MiSeq (Illumina, San Diego, California, USA) instrument targeting a 30X coverage.
- Sequences were *de novo* assembled.
- Analysis of β -lactam resistance mechanisms was performed in silico.
- Genes encoding resistance were searched using a curated library with a criterion of >94% sequencing identity.
- A 40% minimum length coverage was applied.

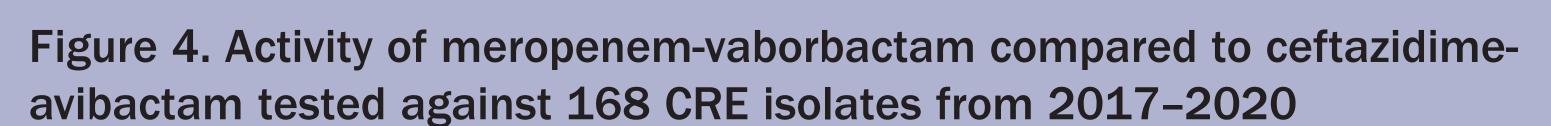

Results

- Among 22,725 Enterobacterales isolates tested, 1.0% (221) were CRE. - Most CRE isolates were collected from pneumonia in hospitalized patients (105 isolates), but also from urinary tract (41), bloodstream (34), skin/soft tissue (25), and intra-abdominal (16) infections.
- Figure 1).
- CRE prevalence decreased in 2020 (0.8%) compared to 2016 (1.2%;
- Cumulatively, serine-carbapenemases—including KPC, SME (Class A), and OXA-48-like enzymes (Class D)—were observed among 181 (81.9%) of the CRE. - Most CRE isolates carried bla_{KPC} variants (174; 78.7%).
- bla_{KPC} variants included 95 $bla_{\text{KPC}-3}$, 75 $bla_{\text{KPC}-2}$, and 1 each of $bla_{\text{KPC}-4}$, $bla_{\text{KPC}-6}$, $bla_{\text{KPC-58}}$, and the Ω -loop variant $bla_{\text{KPC-59}}$.
- *bla*_{SME} was detected among 7 (3.6% of the CRE) Serratia marcescens.
- Two isolates carried $bla_{0XA-232}$ and 1 harbored bla_{0XA-48} (1.8%).
- MBLs were detected among 9 (4.0%) of the CRE. 5 isolates harbored bla_{NDM-1} (including 1 co-harboring bla_{OXA-232}), 2 bla_{NDM-5}, and
- $2 bla_{\text{MM-1}}$. No carbapenemase genes were carried by 28 (12.7%) of the CRE. CRE and carbapenemase-producing isolates prevalence varied among US Census Divisions (Figure 2).


- isolates. · Meropenem-vaborbactam was the most potent agent tested against all isolates (Figure 3).
- Comparator β-lactam agents had limited activity against CRE isolates (0.5%–9.5%) susceptible).
- Amikacin and tigecycline were the most active comparators, inhibiting 79.2% and 95.5% of the CREs, respectively.
- Ceftazidime-avibactam (MIC_{50/90}, 1/4 mg/L) was tested against 168 (2017–2020) CRE isolates, inhibiting 93.5% (Figure 4).
- Against 181 isolates producing class A serine-carbapenemases, meropenemvaborbactam (MIC_{50/90}, 0.03/0.5 mg/L) inhibited 98.9% of all isolates (Figure 3). - Ceftazidime-avibactam inhibited 99.2% of 129 isolates collected in 2017–2020.
- The activity of all agents was limited against MBL producers (Figure 3).

- Carbapenemases were detected among 193 (87.3%) of the CRE.
- Meropenem-vaborbactam (MIC_{50/90}, 0.03/2 mg/L) inhibited 93.2% of the CRE


Figure 1. Occurrence of CRE isolates (221/22,725; 1.0%) in US hospitals from 2016 to 2020


Figure 2. CRE isolates prevalence by US Census Divisions

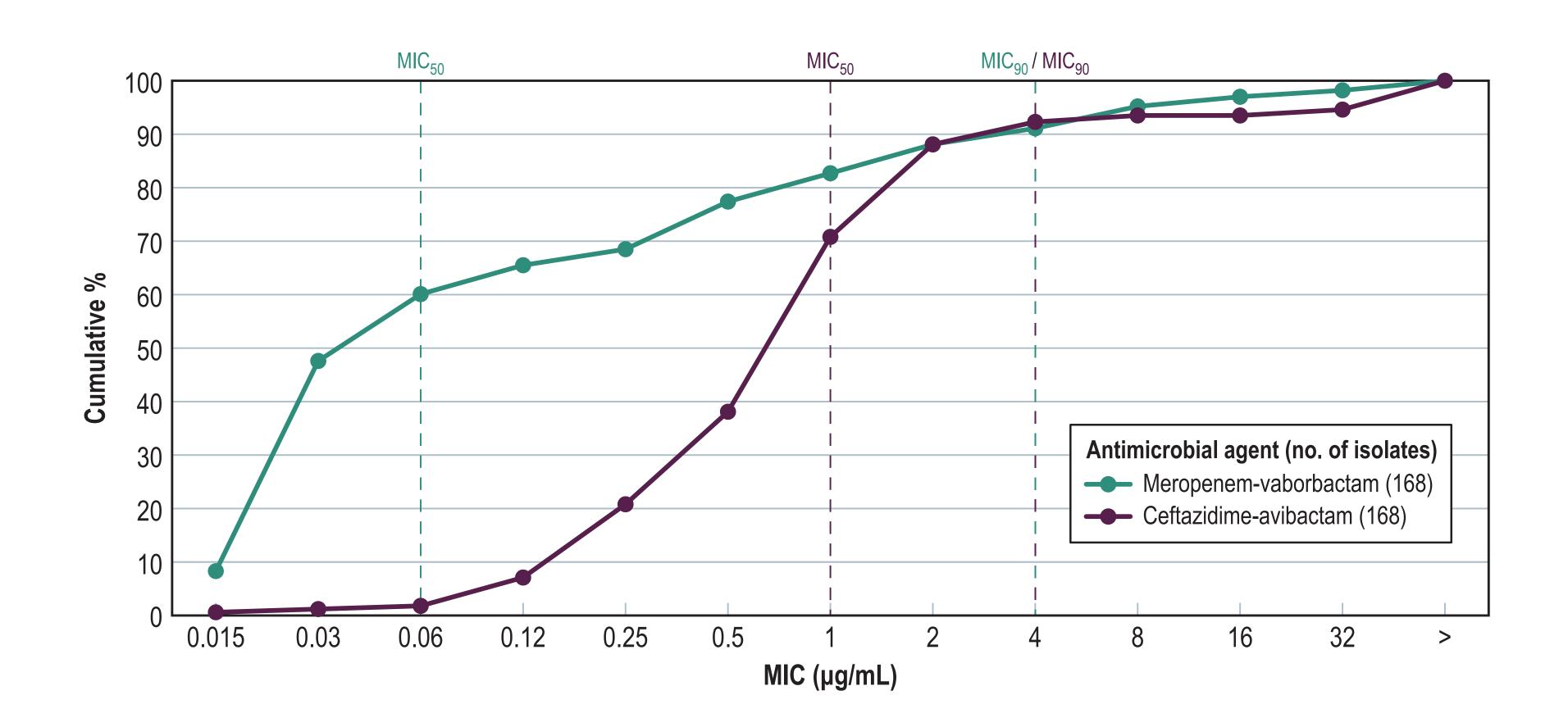


Figure 3. Activity of antimicrobial agents against CRE isolates

avibactam tested against 168 CRE isolates from 2017–2020

Conclusions

- The occurrence of carbapenemases declined from 1.2% to 0.8% during the study period.
- KPC-producing isolates are dominant among CRE from US hospitals.
- Isolates carrying MBLs and/or OXA-48-like enzymes were observed in small numbers (<0.1% overall).
- Meropenem-vaborbactam and ceftazidime-avibactam were very active against isolates producing class A serine-carbapenemases.

Funding

This study was supported by Melinta Therapeutics, Inc. Authors are employees of JMI Laboratories, which was paid consultant to Melinta in connection with the development of this poster.

Acknowledgments

The authors thank all of the SENTRY Antimicrobial Surveillance Program participants for providing isolates.

References

- Alexander EL, Loutit J, Tumbarello M, Wunderink R, Felton T, Daikos G, Fusaro K, White D, Zhang S and Dudley MN. (2017) Carbapenem-resistant *Enterobacteriaceae* infections: Results from a retrospective series and implications for the design of prospective clinical trials. Open Forum Infect. Dis. 4: ofx063.
- CDC. (2019) Antibiotic resistance threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services. Available at https://www.cdc.gov /drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
- CLSI. M07Ed11. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: eleventh edition. Wayne, PA, Clinical and Laboratory Standards Institute, 2018.
- FDA. Antibacterial Susceptibility Test Interpretive Criteria: https://www.fda.gov /drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria
- Tamma P, Aitken S, Bonoma R, Mathers A, van Duin D and Clancy C. (2022) Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 74: 2089–2114.
- Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ and Antibacterial Resistance Leadership G. (2019) A primer on AmpC beta-lactamases: Necessary knowledge for an increasingly multidrug-resistant world. *Clin. Infect.* Dis. 69: 1446-1455.

Contact

Mariana Castanheira, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 riana-castanheira@imilabs.con

To obtain a PDF of this poster:

Scan the QR code or visit https://www.jmi labs.com/data/posters /IDWeek2022

CarbapenemaseFreq

o personal informatior