Risk factors for COVID-19 associated pulmonary aspergillosis in a high endemic setting and development of a bedside clinical risk prediction score Merlin Moni¹, Teny M John², Abdul Razak Moosa¹, Kiran G Kulirankal¹, Fabia Edathadathil¹, Dipu T.S¹

¹Amrita Institute of Medical Sciences and Research Center, Kochi, India, ²The University of Texas MD Anderson Cancer Centre

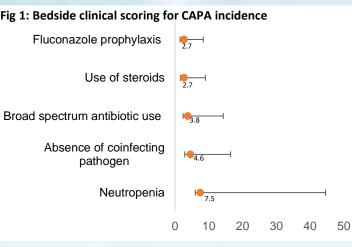
Background

- India has a high burden of invasive fungal infections at baseline.
- The real-world data on the risk factors and outcome of COVID-19 associated pulmonary aspergillosis (CAPA) are limited.

AIM

To determine risk factors and clinical outcomes of CAPA and develop a prediction model for patient stratification

Method


- A retrospective, case-control study was conducted at a 1300-bed tertiary care academic center in South India. from June 1st, 2020 to May 31st, 2021.
- CAPA cases were defined by the 2020 ECMM/ISHAM consensus criteria. Age- and admission period- matched control group with COVID-19 but without aspergillosis was selected in a 1:1 ratio.
- A risk scoring stratification for CAPA was developed based on the significant CAPA risk factors by employing a logistic regression model.

Result

- 95 CAPA cases, of which 75(79%) were probable and 20(21%) possible, were diagnosed during the study period. (Table 1)
- The time from COVID-19 diagnosis to CAPA (in days) was (median, IQR) 13, 12. 40 (42.1%) of patients were on mechanical ventilation at CAPA diagnosis.
- Logistic regression analysis of risk factors showed neutropenia, use of steroids, broad-spectrum antibiotic use, fluconazole prophylaxis and absence of co-infecting pathogen to be significant factors associated with CAPA (p<0.05). (Fig 1)
- An optimal risk score of ≥10.00 predicted CAPA with a sensitivity of 84.2% and a specificity of 55% with an area under the curve of 0.77 (PPv=67.23%, NPV=78.87%)(AUC=0.77)(Fig 2).
- MV, NIV and hospital/ICU stay were significantly higher in CAPA patients compared to controls (Table 2).
 28-day (41.1% vs 33.7%, p=0.13) and 6-week all cause-
- mortality (48.4% vs 37.9%, p=0.07) were higher, but not statistically significant, for CAPA.

Table 1: Baseline characteristics and Risk factors

Total Control P value						
Variables	l otal (N=190)(%)	Case (N=95)(%)	Control (N=95)(%)	P value		
Average age (Mean±SD)	55.3±15.7	56.03±15.2	54.70±16.3	0.563		
Male	140 (71.8)	74 (77.9)	66 (69.5)	0.12		
Severity of COVID-19						
Mild	48 (25.3)	11 (11.6)	37 (38.9)	<0.001		
Moderate-Severe	142 (74.7)	84 (88.4)	58 (61.05)			
Disease classification		. ,	, í			
Probable	75(39.4)	75(78.9)	NA			
Possible	20(10.5)	20(21.05)	NA			
Comorbidities		. ,				
New onset Diabetas Mellitus	2 (1 05)	4 (4 4)	4 (4 4)	0.05		
after admission	2 (1.05)	1 (1.1)	1 (1.1)			
Diabetic Ketoacidosis during IP	5 (2.63)	1 (1.1)	4 (4.2)	0.105		
stay	5 (2.03)	1 (1.1)	4 (4.2)			
Diabetes Mellitus at admission	82 (43.15)	33 (34.7)	49 (51.6)	0.019		
	. ,	. ,	. ,			
Hypertension	81 (42.63)	37 (38.9)	44 (46.5)	0.153		
Chronic Kidney Disease	46 (24.21)	24 (25.3)	22 (23.2)	0.36		
Risk factors						
EORTC risk factors	46 (24.21)	37 (38.9)	9 (9.5)	<0.001		
Lymphopenia	91 (47.89)	75 (78.9)	16 (16.8)	< 0.001		
Neutropenia	14 (7.36)	12 (12.6)	2 (2.1)	0.006		
Hematologic malignancy	14 (7.3)	7 (7.4)	7 (7.4)	0.163		
Transplant	5 (2.63)	3 (3.2)	2 (2.1)	0.32		
Prolonged steroid use prior to	8 (4.21)	7 (7.4)	1 (1.1)	0.033		
admission		. ,	. ,	0.00		
T-cells and B-cell	3 (1.57)	2 (2.1)	1 (1.1)	0.28		
immunosuppresants Ibrutinib use	1 (0.52)	1 (1.1)	0			
	1 (0.32)	1 (1.1)	U	0.32		
Solid organ transplant/Allogenic Stem Cell Transplant	5 (2.6)	3 (3.2)	2 (2.1)	0.32		
Broad-spectrum antibiotic use	155(81.6)	88 (92.6)	67(70.5)	< 0.001		
Fluconazole prophylaxis	55 (28.9)	37 (38.9)	18 (18.9)	0.002		
Diabetic ketoacidosis on admission	5 (2.6)	2 (2.1)	3 (3.2)	0.32		
Clinical Lab Parameters and Microbiology						
HbA1c	7.72±1.99	7.7±2.48	7.72±1.90	0.95		
Absolute Lymphocyte Count at	153.86±210.35 9	125.83 ± 148.14	182.48 ± 256.67	0.06		
admission		40.00 0.40		0.551		
Total Leucocyte count	11.02±7.660	10.68 ± 6.49	11.35±8.71			
Co-infecting Pathogen	24 (12.6)	5(5.2)	19(20)	0.002		
Bacteria	17(8.9)	2(2.1)	15(15.7)	< 0.001		
Fungi	7(3.6)	3(3.1)	4(4.2)	0.7		

Table 2: Primary and Secondary outcomes

Variables	Total (Case+ Control) N=190(%)	Case n=95(%)	Control n=95(%)	RR	P value
Mortality					
28 Day mortality	71(37)	39 (41.1)	32 (33.7)	1.37	0.293
6 week mortality	82(43)	46(48.4)	36(37.9)	1.27	0.14
Clinical cure	108(57)	49(51.6)	59(62.1)	0.65	0.14
Mechanical Ventilation	82(43)	49(51.6)	33(34.7)	2	9
Non-Invasive Ventilation(Over the course)	98(51.5)	66(69.4)	32(33.6)	4.48	<0.001
Hospital stay					
Average length of stay	16.31±12.09	20 ± 12	13±11	-	0.0001
ICU stay	115(60.5)	66(69.5)	49(51.6)	2.14	0.011
More than 7 days of ICU stay	80(42.1)	52(54.7)	28(29.5)	2.89	<0.001

Conclusion

5

4

3.5

3

2

1

1.5

0.5

0

2.5

4.5

- Risk factors of CAPA in India were similar to those reported previously in other countries. CAPA can be seen in severe COVID-19 patients who are not mechanically ventilated. A CAPA risk scoring system, that needs external validation, is a simple
- and feasible risk stratification tool for patients with suspected CAPA.

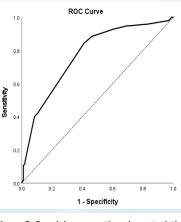


Figure 2: Receiving operating characteristic curve of CAPA incidence score for predicting CAPA in the study cohort