The Time for Action is Now: The Impact of Timing with Infectious Diseases Consultation for Staphylococcus aureus Bacteremia

J. Chase Cole¹, Christopher A. Jankowski¹, Jorge L. Verdecia¹, Malleswari S. Ravi¹, Carmen L. Isache¹, Yvette S. McCarter¹, Anthony M. Casapao^{1,2} 1. UF Health Jacksonville Medical Center, Jacksonville, Florida. 2. University of Florida College of Pharmacy, Jacksonville, Florida

Background

- Staphylococcus aureus (S. aureus) bacteremia (SAB) is a leading cause of bloodstream infections and is frequently complicated by metastatic diseases (e.g. endocarditis)
- Based on published literature, the standard of care includes repeat blood cultures within 2-4 days of index cultures, echocardiography, source control, and early empiric intravenous antibiotic therapy
- Limited studies evaluate the impact of the timing of the consultation infectious disease disease (IDC) on management and clinical outcomes

Purpose & Endpoints

- Determine a defined time to IDC threshold value
- Compare the difference in clinical outcomes in patients with SAB who received an early vs late IDC

MSSA: methicillin-susceptible Staphylococcus aureus; MRSA: methicillin-resistant Staphylococcus aureu

Study Design & Methods

- IRB approved, retrospective, single-center, cohort study
- Study Period: January 1, 2015 to January 1, 2020 (N = 670)
- Time to IDC was defined as time from collection of index positive blood culture to placement of IDC order

Adults \geq 18 years old admitted to UF Health Jacksonville with an initial episode of SAB & received an IDC during the encounter

- **Exclusion** Criteria
- No IDC (n = 241)
- Death, Hospice, Transfer within 4 days (*n*= 44)
- Relapse/Reinfection (*n* = 34)
- Age < 18 (*n* = 20)

· Refusal of Treatment (n = 10)

Table 2. Secondary Endpoints

Secondary Endpoints	Early (<i>n</i> = 204)	Late (<i>n</i> = 117)	<i>p</i> - value
All-Cause In-Hospital Mortality	10 (4.9)	6 (5.1)	0.929
Median Length of Stay, days (IQR)	13.8 (8.9 - 21.5)	16.9 (11.2 - 30.0)	< 0.001
Median Duration of <i>S. aureus</i> bacteremia	3.1 (2.0 - 4.8)	3.7 (2.2 - 6.2)	0.070
SAB Reoccurrence	7 (3.4)	8 (6.8)	0.164
30-Day Readmission	39 (19.1)	38 (32.5)	0.007
60-Day Readmission	63 (30.9)	46 (39.3)	0.125
90-Day Readmission	73 (35.8)	49 (41.8)	0.279
Early β -lactam Utilization for MSSA (n = 153)	79/99 (78.4)	39/54 (72.2)	0.286

Results

Table 1. Patient and SAB Demographics							
Baseline	Early	Late	<i>p</i> -				
Characteristics	(<i>n</i> = 204)	(<i>n</i> = 117)	value				
Age, mean (SD)	52.9 (±15.2)	54.1 (±15.6)	0.701				
Male gender	127 (62.3)	69 (59.0)	0.562				
White race	149 (57.1)	26 (43.3)	<0.001				
Diabetes	75 (36.8)	52 (44.4)	0.176				
Injection drug user	30 (14.7)	23 (19.7)	0.250				
End-stage renal disease	21 (10.3)	24 (20.5)	0.011				
Immunosuppressed	28 (13.7)	10 (8.6)	0.167				
Charlson Comorbidity Index score, mean (SD)	3.5 (±2.8)	4.0 (±3.2)	0.088				
qPitt score, mean (SD)	1.5 (±1.7)	2.1 (±2.0)	0.010				
qSOFA, mean (SD)	1.1 (±0.9)	1.4 (±0.9)	0.021				
MRSA	105 (51.5)	63 (53.9)	0.682				
Complicated SAB	161 (78.9)	93 (79.5)	0.904				
Source Control Procurement	80 (39.2)	51 (43.6)	0.443				
Source Mortality Risk	-	_	0.698				
Low-Risk	32 (15.7)	22 (18.8)	_				
Intermediate-Risk	138 (67.7)	74 (63.3)	_				
High-Risk	34 (167)	21 (18 0)	_				

Data presented as n (%) unless noted otherwise.

Figure 4. Primary Endpoint Components

The authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities. **Contact**: Casapao@cop.ufl.edu

College of Pharmacy UNIVERSITY of FLORIDA

Results, cont.

Table 3. Multivariable Analysis & Composite Primary Endpoint

Covariates	Unadjusted OR (95% CI)	<i>p</i> - value	Adjusted OR (95% CI)	<i>p</i> - value
Early IDC	2.79 (1.75, 4.46)	< 0.001	3.47 (2.07, 5.81)	< 0.001
Community- acquired SAB	2.37 (1.20, 4.69)	0.013	2.69 (1.27, 5.68)	0.009
Source control procurement	3.46 (2.14, 5.60)	< 0.001	4.12 (2.45, 6.93)	< 0.001
Non-ICU admit	1.32 (0.82, 2.11)	0.252	—	-
Complicated SAB	0.89 (0.52, 1.54)	0.692	_	_
End-stage renal disease	1.50 (0.78, 2.89)	0.225	_	_
njection drug Jser	1.03 (0.57, 1.86)	0.932	_	_
MRSA	1.15 (0.74, 1.79)	0.529	-	_

Conclusions

Those who received an IDC in less than or equal to 3.5 days:

- Were more likely to achieve all five quality care indicators • Identification of SAB source was the main difference
- Had a significantly shorter length of stay
- Experienced a lower 30-day readmission rate
- No significant difference was seen between groups regarding all-cause in-hospital mortality, SAB reoccurrence, 60-, and 90-day readmission

Our findings suggest that all patients with SAB should have an IDC as soon as a positive blood culture with *S. aureus*

Discussion

- Time to IDC started from collection to blood culture
- Institution does not require IDC for SAB (~ 64% have IDC)
- Rapid diagnostics and stewardship work effectively with IDC
- Potential misclassification by identifying previous episodes & recurrences of SAB diagnosed at outside hospitals
- Potential delay in implementation of ID recommendations
- Future studies should evaluate early IDC in combination with optimized antimicrobial therapy

Disclosures