UCDAVIS HEALTH

BACKGROUND

- Critically-ill patients often require renal replacement therapy (RRT) due to volume overload, metabolic acidosis, acute kidney injury (AKI) due to multi-organ failure, or electrolyte abnormalities.
- There are various modalities of RRT, and the most common ones used in the intensive care unit are intermittent hemodialysis (iHD), continuous renal replacement therapy (CRRT), or sustained low-efficiency dialysis (SLED)
- Continuous SLED (C-SLED) is a new modality that allows patient mobility, has less risk of bleeding, and requires conventional equipment compared to CRRT.
- There is lack of pharmacokinetic and pharmacodynamics data in C-SLED which causes the uncertainty of efficacy with the current dosing strategies.

OBJECTIVES

Evaluate patient-specific

pharmacokinetic parameters of various βlactam antibiotics in critically ill patients on C-SLED to assess if the current dosing strategy leads to therapeutic drug levels.

METHODS

Prospective, observational, single center pharmacokinetic study Inclusion criteria

- Age >18 years
- In the intensive care unit for >24 hours
- On Sustained Low Efficiency Dialysis in the Continuous Mode (C-SLED)
- Receiving β-lactam antibiotics
- Has at least one drug level

Exclusion criteria

- Pregnant Women
- Prisoners
- Statistical analysis
- Descriptive statistics

OUTCOMES

- Number of patients with drug levels within the therapeutic range.
- Patient specific co-efficient of elimination, half-life, ar clearance.

THERAPEUTIC DRUG TARGETS

Effect	Penicillin (%)	Cephalosporin (%)	Car
Bacteriostatic (%fT>MIC)	30	35-50	
Bactericidal (%fT>MIC)	50	60-70	
Critically ill patients (%fT>MIC)	100	100	

RESULTS

TABLE 1: BASELINE CHARACTERISTICS

Characteristics	All patients
Male sex, n (%)	
Age, years, Median (IQR)	
Antibiotic Use, n (%)	
Empiric	
Targeted	
Escherichia coli	
Pseudomonas aeruginosa	
Klebsiella oxytoca	
Staphylococcus aureus	
Hospital Length of Stay, Days, Median (IQR)	
Dialysate flow rate, mL/min, Median (IQR)	
Blood flow rate, mL/min, Median (IQR)	
Dosing, n (%)	
CrCL >50mL/min	
CrCL 30-50mL/min	

Establishing Pharmacokinetic Profile of β-lactams in Critically III Patients on Continuous Sustained Low-efficiency Dialysis (C-SLED)

Madiha Shah, PharmD, Matthew Horton, PharmD, Monica Donnelley, PharmD, BCIDP, BCPS-AQ ID, AAHIVP University of California, Davis Medical Center, Sacramento, CA

RESULTS

TABLE 2: THERAPEUTIC DRUG MONITORING OUTCOMES

nd	Variables	All Patients n (%)	CrCL >50mL/min n (%)	CrCL 30-50mL/min n (%)
	Achieved Therapeutic Target (%fT>MIC)	13 (100)	10 (100)	3 (100)
	Penicillins (50% fT>MIC)	3 (100)	3 (100)	0
	Cephalosporins (60% fT>MIC)	6 (100)	4 (100)	2 (100)
11) 31.8)	Carbapenems (40% fT>MIC)	4 (100)	3 (100)	1 (100)

TABLE 3: THERAPEUTIC DRUG MONITORING OUTCOMES (Target = 100% fT > MIC)

Variables	All Patients n (%)	CrCL >50mL/min n (%)	CrCL 30-50mL/min n (%)
Achieved Therapeutic Target	8 (61.5)	7 (70)	1 (33)
Penicillins	1(33)	1 (33)	0
Cephalosporins	4 (66.7)	3 (75)	1 (50)
Carbapenems	3 (75)	2 (67)	1 (100)

oapenem (%)
20
40
400

(n

9 (8 55 (19.7) 10 (71.4) 4 (28.6)

2 (50)	
1 (25)	
1 (25)	
50 (32.5)	

200 (0)

300 (50)

10 (77) 3 (23)

TABLE 4; β-LACTAMS ANTIMICROBIALS USED WITH PHARMACOKINETIC AND PHARMACODYNAMICS PARAMETERS

Subject No.	Dose	Cmax (mg/L)	Cmin (mg/L)	Elimination constant (hr-1)	Half-life (hrs)	Clearance (L/hr)	Therapeutic Target (%fT >MIC)
Piperacillin/tazaobactam							
1	3.375g q8h*	154	27	0.43	1.6	11.5	65%
2	3.375g q8h	170	16	0.33	2.0	8.1	87%
3	3.375g q8h*	99	49	0.17	3.9	3.2	100%
Cephalospori	ns						
4	Cefazolin 2g q8h	255	123	0.10	6.8	6.6	100%
5	Cefazolin 2g q8h	255	146	0.10	6.6	6.8	100%
6	Cefepime 2g q8h	40.1	7.64	0.22	3.1	4.9	91%
7	Cefepime 2g q12h	47.5	11.7	0.18	3.7	5.4	79%
8	Ceftazidime/ avibactam 1.25 q8h	88.8	21	0.22	3.1	3.8	100%
9	Ceftolozane/ tazobatam* 3g q8h	48.1	25	0.14	4.7	1.9	100%
Meropenem							
10	1g q12h	30	5	0.14	4.8	2.9	100%
11	1g q8h	47	6	0.29	2.3	5.9	100%
12	1g q8h*#	81	<5	0.46	1.5	9.3	?**
13	1g q8h*	29	13	0.16	4.2	3.3	100%

* Extended Infusion, # disruption in C-SLED, **unclear %fT>MIC since trough was <5

CONCLUSION

- β-lactam daily dose based on CrCL of >30mL/min leads to bactericidal therapeutic drug levels for patients on C-SLED.
- Higher therapeutic drug target (100%fT>MIC) was not achieved in all cases with either dosing strategy.
- Further studies are needed to draw definite conclusion

FUTURE DIRECTION

- Increase sample size
- Analyze clearance by checking drug levels in dialysate fluid
- Monte Carlo simulation to estimate probability of target attainment
- Include other antimicrobials
- Monitor clinical outcomes

REFERENCES

- 1. Fathima N, Kashif T, Janapala RN, Jayaraj JS, Qaseem A. Single-best Choice Between Intermittent Versus Continuous Renal Replacement Therapy: A Review. Cureus. 2019 Sep 3;11(9):e5558. doi: 10.7759/cureus.5558.
- 2. Grupper M, Kuti JL, Nicolau DP. Continuous and Prolonged Intravenous β-Lactam Dosing: Implications for the Clinical Laboratory. Clin Microbiol Rev. 2016 Oct;29(4):759-72. doi: 10.1128/CMR.00022-16.
- 3. Scharf C, Liebchen U, Paal M, Taubert M, Vogeser M, Irlbeck M, Zoller M, Schroeder I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J Intensive Care. 2020 Nov 23;8(1):86. doi: 10.1186/s40560-020-00504-w.