

Background

- Cytomegalovirus (CMV) infection remains a significant complication after allogeneic hematopoietic cell transplant (allo-HCT) and may have a deleterious impact on overall outcomes.
- CMV infection may be associated with increased risk of graft versus host disease (GVHD), myelosuppression, and bacterial, fungal and viral infections.
- Primary prophylaxis (PP) with letermovir significantly reduces the risk of clinically significant CMV infection (CS-CMVi).
- The impact of recipient CMV serostatus on CS-CMVi and long term HCT outcomes has been well described but the impact of donor CMV serostatus remains unclear.

Study Objective

To analyze the significance of donor CMV serostatus in a large cohort of allo-HCT recipients

Methods

- This is a single-center, retrospective cohort study of 651 allo-HCT recipients cared for at our institution between March 2016 and December 2018.
- baseline demographics, transplant characteristics, preventive Data on strategies, CMV infection, and transplant-related outcomes (development of GVHD, all-cause and non-relapse mortality) were collected.
- Donor CMV serology (seropositive (D+) or seronegative donor (D-)) and recipient CMV serology (seropositive (R+) or seronegative recipients (R-)) were used to identify four groups of interest for analysis purposes.
- A univariate analysis was performed for outcomes of interest using CMV serostatus D-/R- as a control group.
- CS-CMVi was defined as CMV disease or CMV viremia leading to preemptive treatment.

Results

- Out of the 651 allo-HCT recipients, 77 were D-/R-, 43 D+/R-, 290 D+/R+, and 241 D-/R+ (Table 1).
- Most patients underwent HCT for AML (40%), received myeloablative conditioning (51%), and had a matched unrelated donor (MUD) HCT (46%).
- In 2018, letermovir was used for PP in 27% of the D+/R+, 18% of the D-/R+ allo-HCT recipients (Table 1) for a total of 116 (55%) allo-HCT recipients.

The Impact of Donor CMV Serostatus on Outcomes of CMV Infections After Hematopoietic Cell Transplantation

Oscar Morado-Aramburo, MD¹, Amy Spallone, MD¹, Fareed Khawaja, MBBS¹, Joseph Sassine, MD^{1,3}, Krithika Srinivasan, MD^{1,2}, Anthony Febres-Aldana, MD^{1,2}, Terri L Shigle¹, Gabriela Rondon¹, MD, Jeremy Ramdial¹, MD, Elizabeth Shpall¹, MD, Ella Ariza-Heredia¹, MD, Roy F Chemaly, MD, MPH¹ ¹Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas. ³Section of Infectious Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.

Table 1

Characteristic	D-/R- (n=77)	D+/R+ (n=290)	D-/R+ (n=241)	D+/R- (n=43)	p-valu
Age, median (range) Gender*	57 (17-74)	55 (5-73)	54 (18-77)	58 (15-70)	0.7503
Female Male	26 (33.8) 51 (66.2)	131 (45.2) 159 (54.8)	•	15 (34.9) 28 (65.1)	0.032
Race					
Asian African American Hispanic/Latino* Middle Eastern* White* Other	0 (0%) 7 (9.1%) 11 (14.3%) 1 (1.3%) 58 (75.3%) 0 (0%)	16 (5.5%) 25 (8.6%) 61 (21.0%) 24 (8.3%) 160 (55.2%) 4 (1.4%)	7 (2.9%) 12 (5%) 25 (10.4%) 4 (1.6%) 188 (78.0%) 5 (2.1%)	4 (9.3%) 3 (7.0%) 0 (0%) 34 (79.1%)	0.0969 0.3549 0.0027 0.0004 <0.0004 0.5969
Indication for transplant		X 7			
ALL* AML* Acute bi-phenotypic leukemia	3 (3.9%) 16 (20.8%) 0 (0%)	40 (13.8%) 139 (48.0%) 1 (0.3%)	33 (13.7%) 98 (40.7%) 5 (2.1%)	6 (14%) 0 (0%)	0.016 <0.000 0.1282
Aplastic anemia CLL/SLL CML CMML	0 (0%) 8 (10.4%) 7 (9%) 2 (2.6%)	4 (1.4%) 10 (3.4%) 7 (2.4%) 11 (3.8%)	5 (2.1%) 9 (3.7%) 14 (5.8%) 3 (1.3%)	2 (4.6%) 3 (7.0%)	0.596 0.061 0.051 0.337
MDS MF	10 (13%) 11 (14.3%)	38 (13.1%) 20 (6.9%)		11 (25.6%) 7 (16.3%)	0.160 0.081
NHL* Other*	10 (13%) 10 (13%)	12 (4.1%) 8 (2.8%)	10 (4.1%) 9 (3.7%)	x y	0.001 0.000
НСТ Туре					
MRD* MUD* MMUD Haploidentical* Cord*	21 (27.3) 40 (51.9) 0 (0) 15 (19.5) 1 (1.3)	105 (36.2) 98 (33.8) 4 (1.4) 63 (21.7) 20 (6.9)	55 (22.8) 143 (59.3) 3 (1.3) 34 (14.1) 6 (2.5)	20 (46.5) 1 (2.3)	0.008 <0.000 0.696 0.152 0.032
Myeloablative conditioning*	17 (22.1)	149 (51.3)	134 (55.6)	30 (69.8)	<0.000
HCT Source					
Marrow* Peripheral* Cord*	16 (20.8) 60 (77.9) 1 (1.3)	78 (26.9) 192 (66.2) 20 (6.9)	89 (36.9) 146 (60.6) 6 (2.5)		0.015 0.033 0.032
Time to engraftment in days, median (range)*	16 (9-376)	15 (2-384)	13 (5-36)	x <i>y</i>	0.021
ATG*	13 (16.9%)	66 (22.7%)	88 (36.5%)	× *	0.000
Post-Cy CMV prophylaxis	45 (58.4%)	141 (48.6%)	94 (39.0%)	26 (60.5%)	0.003
Lead in GCV*	14 (18.2%)	84 (29.0%)	39 (16.2%)	11 (25.6%)	0.006
Letermovir primary prophylaxis*	0 (0%)	79 (27.2%)	44 (18.2%)	0 (0%)	<0.00

* *P* value < 0.05

antithyroglobulin; Post-Cy: post cyclophosphamide; CMV: cytomegalovirus; GCV: ganciclovir

Abbreviations: D: donor, R: Recipient, ALL: acute lymphoblastic leukemia; AML: Acute myeloid leukemia; CLL/SLL: Chronic lymphoblastic leukemia/small lymphocytic leukemia; CML: chronic myeloid leukemia; CMML: Chronic myelomonocytic leukemia; MDS: myelodysplastic syndrome; MF: myelofibrosis; NHL: non-Hodgkin lymphoma ; HCT: hematopoietic cell transplantation; MRD: Match related donor; MUD: match unrelated donor: MMUD: mismatched unrelated donor; ATG:

- D-/R- (3.9% vs. 10.8%, p=0.07).

Ta	b	e	2

Table 2. Outcome analysis Variable CMV within 48 weeks CS-CMVi*

CMV end-organ disease

R/R CMV

GVHD	
GVHD at day 100	
GV/HD at week 48	

GVDD al week 40

Outcomes All-cause mortality at day

All-cause mortality at week

All-cause mortality at week

Non-relapse mortality at day

Non-relapse mortality at

week 24 Non-relapse mortality at

week 48

* P value <0.05

¹Univariate analysis using D-/R- as a control ² Univariate analysis comparing D+/R+ to D-/R-Abbreviations: D: donor, R: Recipient; CMV: cytomegalovirus; CS-CMVi: Clinically significant CMV infection; R/R CMV: CMV; GVHD: Graft versus host disease.

• Allo-HCT recipients with CMV seronegative donor and recipient had less CMV related complications and a trend towards better survival when compared to D-/R+ allo-HCT.

 CMV D-/R+ HCT recipients had greater CMV related complications when compared to CMV D+/R+ HCT recipients, possibly due to the protective effect of donor seropositivity.

References

- Cancer letters. Jan 2014. 342 (1): pages 1-8.
- journal of transplantation 19.9 (2019): 2495-2504.
- 377.25 (2017): 2433-2444.
- Hematology 2019, 98:1755-63.

Compared to the CMV D-/R- group, D+/R+ and D-/R+ groups (Table 2) had a greater incidence of CS-CMVi (3.9% vs. 40% vs. 50.6%; all p<0.01, respectively), CMV end organ disease (0% vs. 14.8% vs. 19.1%; all p<0.001, respectively), and refractory/resistant (R/R) CMV infections (0% vs. 5.5% vs. 12.4%; all p<0.03, respectively) within 48 weeks of allo-HCT.

THE UNIVERSITY OF TEXAS

MDAnderson

Cancer Center

#2121

CS-CMVi and R/R CMV was more common in D-/R+ allo-HCT when compared to D+/R+ group (50.6% vs. 40.0%, p<0.001).

Non-relapse mortality at day 100 in all R+ Allo-HCT recipients was numerically greater than D/R- (3.9% vs 10.0%; 0.0931).

D-/R+ allo-HCT had higher non-relapse mortality at day 100 compared to

D-/R- (n=77)	D+/R- (n=43)	p- value ¹	D+/R+ (n=290)	p-value ¹	D-/R+ (n=241)	p-value ¹	p-value ²
3 (3.9)	4 (9.3)	0.2480	116 (40.0)	<0.0001*	122 (50.6)	<0.0001*	0.0179*
0 (0)	1 (2.3)	0.3583	43 (14.8)	<0.0001*	46 (19.1)	<0.0001*	0.2433
0 (0)	1 (2.3)	0.3583	16 (5.5)	0.0291*	30 (12.4)	0.0002*	0.0052*
31 (40.3)	21 (48.8)	0.5338	134 (46.2)	0.1032	123 (51.0)	0.3639	0.2955
49 (63.6)	27 (62.8)	1.0000	143 (49.3)	0.0291*	133 (55.2)	0.2338	0.1911
5 (6.5)	3 (7.0)	1.0000	33 (11.4)	0.2923	28 (11.6)	0.2825	1.0000
16 (20.8)	5 (11.6)	0.3161	52 (17.9)	0.6207	49 (20.3)	1.000	0.5065
18 (23.4)	7 (16.3)	0.4829	86 (29.6)	0.3205	79 (32.8)	0.1547	0.4524
3 (3.9)	2 (4.6)	1.0000	27 (9.3)	0.1609	26 (10.8)	0.0720	0.6630
8 (10.4)	1 (2.3)	0.2680	36 (12.4)	0.8430	39 (16.2)	0.2695	0.2600
11 (14.3)	2 (4.6)	0.2153	54 (18.6)	0.5005	53 (22.0)	0.1902	0.3848

Conclusions

• Ella J.Ariza-Heredia, Lior Nesher, Roy F. Chemaly. "Cytomegalovirus diseases after hematopoietic stem cell transplantation: A mini-review.

• L'Huillier, Arnaud G., et al. "Improving our mechanistic understanding of the indirect effects of CMV infection in transplant recipients." American

• Marty, Francisco M., et al. "Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation." New England Journal of Medicine

• Schmidt-Hieber M, Labopin M, Beelen D, et al. "CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT." Blood 2013; 122:3359–64. • Schmidt-Hieber M, Tridello G, Ljungman P, et al. "The prognostic impact of the cytomegalovirus serostatus in patients with chronic hematologic malignancies after allogeneic hematopoietic stem cell transplantation: a report from the Infectious Diseases Working Party of EBMT." Annals c

