

BACKGROUND

- Bacteremia is the leading cause of chemotherapy-related morbidity and mortality in children with acute leukemia.
- Antimicrobial prophylaxis reduces rates of gram-negative bacteremia and is now recommended in adults by the National Comprehensive Cancer Network.
- Levofloxacin prophylaxis in high-risk oncologic 3 populations has been standard of care at Children's Hospital Colorado (CHCO) since 2018.
- Fluoroquinolone (FLQ) use impacts unit-wide 1.5
 resistance, this was not evaluated in previous 1
 FLQ prophylaxis studies, and may mitigate 0.5

OBJECTIVE

To evaluate the unit-wide development of resistance after implementation of levofloxacin prophylaxis in our patients, and the incidence of bacteremia per 1000-line days.

METHODS

• A single-center, retrospective review evaluated susceptibility patterns of all first positive blood cultures obtained between January 2016-December 2021 in patients hospitalized at the CHCO Center for Cancer and Blood Disorders (CCBD) unit, whether they received levofloxacin prophylaxis or not.

 Positive cultures were identified in Meditech[®] or EPIC Beaker[®] and antimicrobial susceptibility data gathered from Microscan[®] or Sensititer[®].

 Institutional review board approval was granted, and all data was analyzed using descriptive statistics performed in Excel[®].

Graph 1: Total bacteremia per 1000 central line days and nonsusceptibility (NS)

Table 1: Bacteremia and NS results

N B Ep	lumber of acteremia bisodes (N)	Bacteremia per 1000 Central Line Days	FLQ NS Total Bacteremia Episodes N (%)	FLQ NS Total Isolates Tested N (%)	CTX/CFT NS Total Bacteremia Episodes N (%)	CTX/CFT NS Total Isolates Tested N (%)	Cefepime NS Total Bacteremia episodes N (%)	Cefepime NS Total Isolates Tested N (%)
	2016 (44)	3.823095	5 (11.4)	26 (19.2)	12 (27.3)	23 (52.2)	3 (6.8)	10 (30.0)
	2017 (29)	2.749597	7 (24.1)	23 (30.0)	10 (34.5)	19 (52.6)	1 (3.5)	10 (10.0)
	2018 (46)	4.503182	11 (23.9)	29 (37.9)	7 (15.2)	29 (24.1)	6 (13.0)	21 (28.6)
	2019 (23)	2.802486	6 (26.1)	10 (60.0)	4 (17.4)	13 (30.7)	2 (8.7)	9 (22.2)
	2020 (28)	3.395174	8 (28.6)	24 (33.3)	11 (39.3)	22 (50.0)	8 (28.6)	18 (44.4)
	2021 (24)	3.065526	11 (45.8)	22 (50.0)	12 (50.0)	22 (54.5)	2 (8.3)	14 (14.3)

Evaluation of Antimicrobial Susceptibility Patterns Following Implementation of Levofloxacin Prophylaxis in those with Cancer and Blood Disorders

Christine E. MacBrayne, PharmD, MSCS, BCIDP¹, Matthew Weber, MPH², Elaine Dowell, MT(ASCP)SM¹, Sarah Janelle, MPH, CIC¹, Sarah K. Parker, MD²

¹Children's Hospital Colorado^{; 2}Department of Pediatrics, University of Colorado School of Medicine

RESULTS

- The unit-wide rate of bacteremia per 1000 central line days did not significantly decrease (p=0.59) after initiation of levofloxacin prophylaxis.
- Unit-wide levofloxacin/ciprofloxacin nonsusceptibility increased to almost 46% of tested isolates in 2021 (p = 0.02). Cefotaxime/ceftriaxone nonsusceptibility also rose to over 50% (p 0.003), while cefepime nonsusceptibility appeared stable (p = 0.38)

CONCLUSIONS

- Bacteremia amongst all CHCO CCBD patients did not decrease despite consistent levofloxacin prophylaxis in high-risk patients since November 2018.
- Antimicrobial non-susceptibility to FLQ and other agents increased over the time period.
- Closer and ongoing evaluation are warranted to weigh the benefits of use against risks.

REFERENCES/DISCLOSURES

- 1. Alexander S, Fisher BT, Gaur AH, et al. Effect of Levofloxacin Prophylaxis on Bacteremia in Children With Acute Leukemia or Undergoing Hematopoietic Stem Cell Transplantation A Randomized Clinical Trial. JAMA. 2018;320(10):995-1004.
- 2. Gafter-Gvili Á, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;1:CD004386.
- McCormick M, Friehling E, Kalpatthi R, Siripong N, Smith K. Costeffectiveness of levofloxacin prophylaxis against bacterial infection in pediatric patients with acute myeloid leukemia. Pediatr Blood Cancer. 2020;e28469.
- National Comprehensive Cancer Network. Prevention and Treatment of Cancer Related Infections (Version 2.2020). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. Accessed August 3, 2020.
- Wolf J, Tang L, Flynn PM, et al. Levofloxacin prophylaxis during induction therapy for pediatric acute lymphoblastic leukemia. Clin Infect Dis. 2017;65(11):1790-1798.

All authors have nothing to disclose