Children's Hospital Colorado Here, it's different.™

Multi-modal Quality Improvement Study to Reduce C. difficile **Detection and Infections in Hospitalized Children**

Jillian M. Cotter, MD, MSCS^a, Claire Stokes, MD, MPH^b, Suhong Tong, MS^a, Samuel R. Dominguez, MD, PhD^a ^a University of Colorado School of Medicine and Children's Hospital Colorado, ^b Children's Healthcare of Atlanta and Emory University

BACKGROUND

- Rising rates of *Clostridiodes difficile (C.diff*)
- Intro of Gastrointestinal Panel (GIP) → immediate \uparrow in *C.diff*, driven, in part, by test changes
- Tests cannot differentiate true *C.diff* infection vs. colonization, and \uparrow testing \uparrow risk for detecting asymptomatic colonization
- Inappropriate testing → over-treatment → costs, side effects, resistance
- AIM: Reduce *C.diff* hospital-acquired infections (HAI) and detection by 20%

METHODS

- **Design**: Quality improvement study
- **Population:** Hospitalized children w/ stool testing (2018-2020)
- Intervention bundle:
 - Education & clinical pathway
 - New testing options: GIP w/ or w/o C.diff
 - Electronic clinical decision support tool restrictions, alternatives, optional approval
 - Preventative cleaning measures
- **Outcomes:** *C.diff* HAI rates and detection per 10k patient-days (PD
- **Process:** % stools capable of detecting *C.diff*
- **Balancing:** % patients w/ non-reported (+) C.diff (GIP w/o *C.diff* ordered) that was ultimately released due to concern for true infection and treated, % w/ adverse event or reutilization
- Monitored in real time by ID expert for 7 mo
- Antibiotics saved (10d, 100% treatment rate)
- **Statistical Process Control Charts**

RESULTS

Stool Testing:

- encounters

Outcomes:

- (*Figure 1*)

Process:

C.diff (<u>Figure 2</u>)

Balancing:

Antibiotics saved:

annually

2,001 tests performed for 1,982

Median age children 8 years (2-15) 51% testing on medical/GI team, 21% heme/onc, 23% ICU, 6% cardiology

55% \downarrow in hospital-wide *C.diff* HAI rates

44% \downarrow in *C.diff positive results*

44% \downarrow in testing capable of detecting

Only 2.4% (2/84) non-reported C.diff (+) tests were ultimately released due to concern for true infection and treated Of patients with non-reported C.diff (+) that remained suppressed (n=82) Most (81%) were <1yo or coinfected with another organism None had adverse event 6% had GI-related revisit or

readmission (2/4 re-tested, both

+*Cdiff*, only 1 treated)

Only 2.4% underwent repeat testing

• 1,371 antibiotic days could be avoided

Stool Testing Restriction \rightarrow Alternatives No GIP w/ *C. difficile* in children <1 year old **GIP w/o** *C. difficile* No GIPs for children hospitalized for >96 hours* C. difficile PCR No testing if no evidence of diarrhea (bristol stool scale)* No testing if recent negative stool test in the last 7 days No testing if recent positive stool test in the last 14 days No testing if laxative use in the last 24 hours*

CONCLUSIONS

- Education coupled with EMR-based testing changes resulted in an impactful and sustained \checkmark in *C*. *difficile* detection and HAI rates
- Diagnostic stewardship led to a reduction in infection rates, likely by reducing tests with a low pre-test probability of true infection
- Diagnostic stewardship can help promote antibiotic stewardship

IMPLICATIONS

Multi-modal interventions can safely reduce *C. diff* testing, detection, and infection

DISCLOSURES

None

