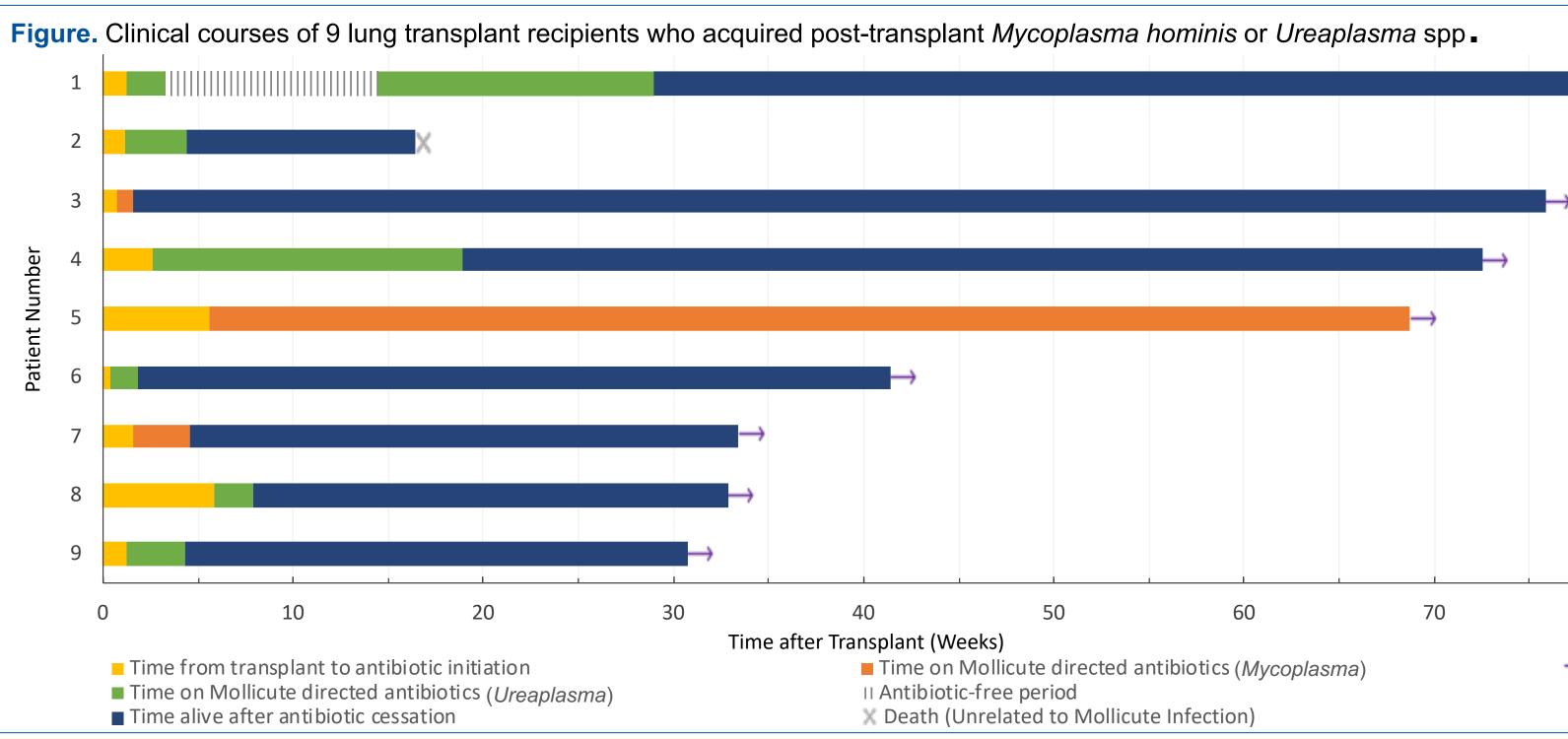
Patrick C.K. Tam¹, Barbara D. Alexander^{1,2}, Mark J. Lee^{1,2}, Rochelle G. Hardie², John M. Reynolds³, John C. Haney³, Ken B. Waites⁴, Arthur W. Baker^{1,5}

1- Duke University School of Medicine, Division of Infectious Diseases, Durham, NC, USA, 3- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, NC, USA, 4- Department of Pathology, University of Alabama at Birmingham, AL, USA, 5- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA


Background

- Mollicutes are fastidious bacteria that can cause both pulmonary and extrapulmonary donor-derived infections after lung transplant
- Best practice for donor screening and recipient surveillance is unknown

OBJECTIVE: To assess the performance of donor respiratory tract Mollicute screening in lung transplant recipients

Methods

- Prospective analysis of all lung transplant recipients between **10/5/20** – 9/25/21 at a single academic transplant center
- Donor BAL performed at time of transplant was tested for the presence of urogenital *Mycoplasma* spp. and Ureaplasma spp. using culture and PCR (screening)
- Screening results were blinded to treating clinicians
- Clinical infection was defined as any microbiological study submitted and positive for *M. hominis* or *Ureaplasma* spp. post-transplantation
- Donor and recipient characteristics, treatment courses, and outcomes were analyzed with a follow-up period up to 1 year after transplant

Table 1. Characteristics of 9 lung transplant recipients who developed Mollicute colonization or infection

Patient Number	Age and Gender	Positive Donor Screening Tests	Donor Species Detected	Positive Tests for Recipient Diagnosis	Recipient Species Detected	Site of Mollicute Detection	Hyperammonemia Syndrome ^a	Weeks of Mollicute Antimicrobial Therapy	Outo
1	64 M	PCR and culture	<i>M. hominis</i> and <i>U. urealyticum</i>	Culture	U. urealyticum	Pulmonary and extrapulmonary (mediastinal)	No	16.5 weeks	Clini
2	69 M	PCR and culture	<i>U. parvum</i> and <i>U. urealyticum</i>	Culture	<i>Ureaplasma</i> sp.	Pulmonary	No	3 weeks	Deat (unre
3	66 F	Culture	<i>Mycoplasma</i> sp.	Culture	<i>Mycoplasma</i> sp.	Pulmonary	Possible	1 week	Clini
4	72 M	PCR and culture	U. parvum	PCR and Culture	U. parvum	Pulmonary and extrapulmonary (pleural)	Definite	16 weeks	Clini
5	74 M	Culture	M. hominis	Culture	M. hominis	Extrapulmonary (mediastinal)	Νο	63 weeks (ongoing)	Long antib supp
6	51 M	Negative screen	N/A	Culture	<i>Ureaplasma</i> sp.	Pulmonary	No	1.5 weeks	Clini
7	43 F	PCR	M. hominis	Culture	M. hominis	Pulmonary	No	3 weeks	Clini
8	27 F	Negative screen	N/A	PCR	<i>Ureaplasma</i> sp.	Pulmonary	No	2 weeks	Clini
9	58 F	PCR and culture	<i>Ureaplasma</i> sp.	Culture	<i>Ureaplasma</i> sp.	Pulmonary	No	3 weeks	Clini

^aDefinite hyperammonemia syndrome was defined by altered mentation and a corresponding serum ammonia level \geq 100 µmol/L. Possible hyperammonemia syndrome required altered mentation and ammonia levels of 51-99 µmol/L. ^bDeath for Patient 2 was due to an unrelated infection. ^cLong-term antibiotic suppression for Patient 5 is due to hardware-associated mediastinal *M. hominis* infection. Abbreviations: M., Mycoplasma; PCR, polymerase chain reaction; U., Ureaplasma.

Donor-Derived Mollicute Infections in Lung Transplant Recipients: a Prospective Study of Donor Respiratory Tract Screening and Recipient Outcomes

\rightarrow	
•	
80	
00	
→ Alive	

tcome inical cure

ath nrelated)^b nical cure

nical cure

ng-term ibiotic pression nical cure

nical cure

nical cure

nical cure

Results

- 115 patients underwent lung transplantation
- 99/115 (86%) of lung transplant recipients had donor BAL tested for Mollicutes with Mollicute-specific culture and PCR at time of transplant
- 8/99 (8%) donors had culture-positive samples, and 15/99 (15%) had PCR**positive samples** for Mollicutes during screening at time of transplant
- 9/99 (9%) patients developed clinical Mollicute infection post-transplant (Figure)
- Recipients were diagnosed a median of 6 days after transplant (IQR 4-15 days)
- 6 patients had isolated pulmonary infection and 3 patients had extrapulmonary infection
- Of these 9 patients, 1 death occurred which was unrelated to Mollicute infection (Table 1)
- Donor BAL culture sensitivity was 6/9 (67%) and PCR sensitivity was 5/9 (56%) in predicting recipient Mollicute infection. Positive predictive value (PPV) was 6/8 (75%) for donor culture and 5/15 (33%) for PCR (Table 2)

Conclusions

- In our single center cohort, donor BAL screening via culture predicted all serious recipient Mollicute infections and had better PPV than PCR
- Given the limitations of either donor screening method, clinicians should maintain a high index of suspicion for Mollicute infection after lung transplant despite a negative screening test

 Table 2. Performance of donor BAL screening methods in predicting Mollicute
 infection among 99 lung transplant recipients

Donor Screening				Positive Predictive		Negative		
Method	Sensitivity		Specificity		Value		Predictive Value	
PCR	5/9	(56)	80/90	(89)	5/15	(33)	80/84	(95)
Culture	6/9	(67)	88/90	(98)	6/8	(75)	88/91	(97)
PCR and culture ^a	7/9	(78)	78/89	(88)	7/18	(39)	78/81	(96)

Data are presented as No. (%). ^aFor the combined PCR and culture method, if either the PCR or culture detected a Mollicute, the donor screening test was considered to be positive. If both studies were negative, the screening test was negative. Abbreviations: PCR, polymerase chain reaction.

Duke University School of Medicine

Contact Info: Patrick.Tam @duke.edu