

Acute kidney injury incidence comparison of vancomycin trough-based vs AUC/MIC monitoring at a tertiary care hospital

Rafael Ruiz-Gaviria MD¹, Sarah J. Norman PharmD, BCPS, BCIDP² Adrian MD³, Sarah H. Elgendi MBA, BCPS², Jiling Chou MA⁴, Sheena Ramdeen MD, MPH¹ 1 Department of Medicine, Infectious Disease Section, Medstar Washington Hospital Center. 2 Department of Medicine, Medstar Washington Hospital

Background and Objective

- Therapeutic drug monitoring (TDM) of vancomycin is fundamental to optimizing efficacy and adverse effects.
- The Infectious Diseases Society of America (IDSA) guidelines now recommend vancomycin dosing based on area under the curve/minimum inhibitory concentration (AUC/MIC).
- The primary objective was to compare the incidence of acute kidney injury (AKI) utilizing trough vs AUC/MIC vancomycin monitoring.

Methodology

- Retrospective cohort study of 371 patients \geq 18 years old who received vancomycin for >48 hours from January to June 2019 for trough-based dosing and July to December 2021 for AUC/MIC dosing. Patients who developed AKI within 48 hours of vancomycin were excluded.
- The primary outcome was incidence of AKI per Kidney Disease Improving Global Outcomes (KDIGO) definition. Data were analyzed using a multivariate logistic regression model.

Results

- The median age was 62 (49-73) and 59 (45-68) years for the trough and AUC/MIC cohorts, respectively.
- Most patients were admitted to non-ICU units ($n_T = 138$ and $n_{AUC} =$ 99).
- The most common infections were pneumonia ($n_T = 29\%$ and $n_{AUC} =$ 20%) and soft tissue infections ($n_T = 23\%$ and $n_{AUC} = 32\%$).
- Supratherapeutic vancomycin levels occurred in 19.3% and 9.2% in the trough and AUC/MIC groups, respectively.

Center. Washington DC Washington DC 4 Medstar Health Research Institute, Hyattsville, MD

Table 1. Frequency of concomitant nephrotoxic agents

		Trough levels n=229	AUC/MIC n=142
Diuretics	Yes	73 (31.9%)	34 (24.1%)
Piperacillin/tazobactam	Yes	146 (63.8%)	76 (53.5%)
Aminoglycosides	Yes	26 (11.4%)	1 (0.7%)
Cefepime	Yes	46 (20.1%)	35 (24.6%)
IV contrast	Yes	80 (34.9%)	47 (33.1%)
Vasopressors	Yes	38 (16.6%)	29 (20.4%)
NSAIDs	Yes	33 (14.4%)	11 (7.7%)
Acyclovir	Yes	14 (6.1%)	6 (4.2%)

NSAID: Non steroid anti inflammatory drugs

Table 2. Multivariate logistic regression model

Trough vs AUC/MIC Piperacillin/tazobac Cefepime ICU admission Supratherapeutic level Diuretics

- cohort vs AUC/MIC cohort.

1. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2020;77(11):835–64. 2. Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019 Apr;46(4):292–301. 3. Alvarez AS, Oyerinde O, Reinert JP. Drug-Induced Kidney Disease Associated With Selected Antibiotics. Sr Care Pharm. 2020 May 1;35(5):225-9.

4. Luque Y, Mesnard L. [Vancomycin nephrotoxicity: Frequency and mechanistic aspects]. Nephrol Ther. 2018 Apr;14 Suppl 1:S133-8. 5. Sawada A, Kawanishi K, Morikawa S, Nakano T, Kodama M, Mitobe M, et al. Biopsy-proven vancomycin-induced acute kidney injury: a case report and literature review. BMC Nephrol. 2018 Mar 27;19(1):72. 6. Qin X, Tsoi M-F, Zhao X, Zhang L, Qi Z, Cheung BMY. Vancomycin-associated acute kidney injury in Hong Kong in 2012-2016. BMC Nephrol. 2020 Feb 3;21(1):41.

7. de Almeida CDC, Simões E Silva AC, de Queiroz Oliveira JA, Batista ISF, Pereira FH, Gonçalves JE, et al. Vancomycin-associated nephrotoxicity in non-critically ill patients admitted in a Brazilian public hospital: A prospective cohort study. PloS One. 2019;14(9):e0222095. 8. Bellos I, Daskalakis G, Pergialiotis V. Relationship of vancomycin trough levels with acute kidney injury risk: an exposure-toxicity metaanalysis. J Antimicrob Chemother. 2020 Oct 1;75(10):2725–34. 9. Sakoulas G, Moellering, Jr. RC. Increasing Antibiotic Resistance among Methicillin-Resistant Staphylococcus aureus Strains. Clin Infect Dis. 2008 Jun;46(S5):S360-7.

10. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009 Jan 1;66(1):82–98.

Contact information: Rafael Ruiz-Gaviria 202-877-7164 raforuiz28@gmail.com

	OR (95% CI)	P-value
	1.1 (0.58-2.12)	0.777
tam	1.72 (0.91-3.39)	0.105
	0.99 (0.45-2.06)	0.984
	1.81 (0.96-3.41)	0.065
vels	5.89 (3.03-11.54)	< 0.001
	1.41 (0.73-2.66)	0.298

Conclusion

• The incidence of AKI was higher in the vancomycin trough-based

• The difference was not statistically significant, but these findings are clinically relevant to practice.

• These findings align with the IDSA guidelines and suggest that vancomycin AUC/MIC monitoring may cause less nephrotoxicity.

References