

Poster 1792

Different Patterns of Antibiotic Use in Different Administrative Categories: An Overview of 10 years (2009/2018) of a Statewide Surveillance Program in Sao Paulo, Brazil

Washington D.C. October 19-23, 2022

Filipe T. Piastrelli, MD¹, Denise B Assis, MD², Geraldine Madalosso, MD², Ícaro Boszczowski, MD^{1,3}

1. Infection Control Department, Hospital Alemão Oswaldo Cruz 2. Divisao de Infeccoes Hospitalares, Centro de Vigilancia Epidemiologica "Prof. Alexandre Vranjac" Centro de Controle de Doencas, Secretaria de Estado da Saude, São Paulo 3. Infection Control Department Hospital das Clínicas.

Background

- Knowledge about antibiotic use is important to plan effective interventions in antibiotic stewardship programs.
- Different antibiotic use patterns can be observed in groups of hospitals with specific characteristics.
- Brazil has a complex healthcare system and hospitals have different administrative categories. That determines different resources and operating conditions.

Objective

• To describe ICU antibiotic use in different administrative categories based on data reported to the Nosocomial Surveillance System (NSS) of the State Health Department in the State of Sao Paulo, Brazil.

Methods

- \bullet Ecological study of antibiotic use (DDD/1000 pd*) in ICU from 2009 to 2018 in administrative categories:
 - Private, Philantropic and Public hospitals
 - Public hospitals were subdivided as
 - Social Health Organization (SHO): private administration, public resources
 - Direct public administration (DPA): public administration and resources
- Overall pooled mean was calculated by therapeutic class in the total of the hospitals and in each group
- The incidence and proportion of MDRO (multidrug resistant organisms) from blood cultures was calculated.
- * DDD: defined daily dose, pd: patient-day

Results

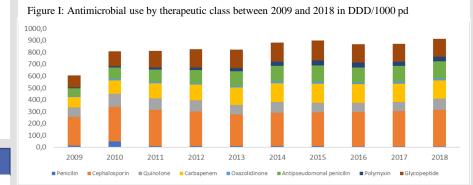


Table I: Antibiotic use by therapeutic class by administrative type in DDD/1000 patients-day

	Administrative type					
Therapeutic class	Philanthropic	Private	Public	p		
Penicilin	8.52 (1.25)	15.57 (0.56)	9.20 (1.20)	< 0.05		
Cephalosporin	308.48 (263.95)	280.69 (220.68)	272.38 (203.97)	< 0.001		
Quinolone	101.96 (59.38)	89.50 (48.83)	72.34 (32.66)			
Carbapenem	120.22 (99.05)	135.65 (114.23)	170.09 (158.01)	< 0.001		
Oxazolidinone	4.07 (0.0)	24.54 (0.0)	8.10 (0.0)	< 0.001		
Antipseudomonal penicilin	95.83 (84.31)	128.34 (118.87)	125.03 (112.03)	< 0.001		
Polymyxin	22.01 (3.13)	22.29 (8.28)	46.69 (24.57)	< 0.001		
Glycopeptide	120.25 (98.64)	143.15 (119.91)	182.23 (167.40)	< 0.001		
Total	785.12 (744.30)	849.07 (730.57)	889.11 (796.01)	< 0.001		

Table II: Antibiotic use in public hospital by subgroup between 2009 and 2018 in DDD/1000 patients-day

	Administration type in public hospitals			
Therapeutic class	SHO	DA	р	
Penicilin	10.67 (2.20)	8.72 (0.87)	< 0.001	
Cephalosporin	231.64 (212.59)	285.10 (201.79)	>0.05	
Quinolone	67.70 (34.41)	73.79 (32.32)	>0.05	
Carbapenem	208.01 (185.72)	158.25 (148.05)	< 0.001	
Oxazolidinone	9.83 (0.0)	7.57 (0.0)	>0.05	
Antipseudomonal penicilin	131.15 (127.43)	123.03 (108.12)	< 0.05	
Polymyxin	74.47 (56.04)	38.02 (17.88)	< 0.001	
Glycopeptide	202.46 (189.85)	175.91 (155.38)	< 0.001	
Total	928.84 (883.61)	871.67 (765.26)	< 0.001	

- 386 (332-420) hospitals/year, 17.490.966 patient-days
 - 27% philantropic, 26% public, 47% private
- Total antibiotic use in ICUs increased from 588.16 (2009) to 943.12 (2018) DDD/1000pd
 - Public(889.11) > Private(849.07) > Philanthropic(785.12) $_{p<0.05}$
 - Public SHO (928.84) > Public DPA (871.67) p<0.001
- The proportion of resistant phenotypes was higher in public hospitals than private and philanthropic institutions

Table III - Proportion of resistant bacteria by phenotypic profile of resistance and administration type in the period 2009 to 2018.

Administration	CRAb	CRPa	CRKp	ESBL	MRSA	VRE		
type								
Philanthropic	65,6%	28,2%	26,3%	24,6%	62,9%	23,0%		
Private	71,4%*	34,1%	29,6%	23,8%	56,9%	22,4%		
Public	76,8%*	44,0%*	37,0%*	29,3%*	72,7%*	40,7%*		

CRAb: Carbapenem-resistant A. baumannii, CRPa: Carbapenem-resistant P.aeruginosa, CRKp: Carbapenem-resistant K.pneumoniae, ESBL: Extend spectrum beta-lactamase – producing Enterobacteriaceae, MRSA: Methicilin-resistant S.aureus, VRE: Vancomycin resistant Enterococcus sp.

Discussion

- Few studies have evaluated the difference in antibiotic use by administrative type.
- Understanding antibiotic use patterns in different scenarios will allow the planning of more specific public health actions.
- More studies are needed to investigate the causal relationship of this difference.

References

1. Nogueira Junior C, Mello DS, Padoveze MC, Boszczowski I, Levin AS, Lacerda RA. Characterization of epidemiological surveillance systems for healthcare-associated infections (HAI) in the world and challenges for Brazil. Cad Saude Publica. 2014 Jan;30(1):11-20. 2. Pimentel, V., Barbosa, L., Machado, L., Adão, F. L. and Reis, C., (2017) Sistema de Saúde Brasileiro: Gestão, institucionalidade e financiamento. [online] Available at: https://web.bndes.gov.br/bib/jspu/bistream/1408/14/134/2/BNDES-Setorial-46 Saude P. BD.pdf (Accessed 13 Mar 2021). 3. Plüss-Suard C, Pannatier A, Kronenberg A, Mühlemann K, Zanetti G. Hospital antibiotic consumption in Switzerland: comparison of a multicultural country with Europe. J Hosp Infect. 2011 Oct;79(2):166-71. 4. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis. Plano de ação nacional de prevenção e controle da resistência aos antimicrobianos no âmbito da saúde única 2018-2022 (PAN-BR). Available at: https://portalarquivos/saude.gov.br/mages/pdf/2018/dezembro/204/a-pan-b-1/dez/18-20/328-csa.pdf . [Accessed 31 Jan 2021] 5. Dumartin C, UHériteau F, Péfau M, Bertrand X, Jarno P, Boussat S, Angora P, Lacavé L, Saby K, Savey A, Nguyen F, Carbonne A, Rogues AM. Antibiotic use in 530 French hospitals: results from a surveillance network at hospital and ward levels in 2007. J Antimicrob Chemother. 2010 Sep;65(9):2028-36.