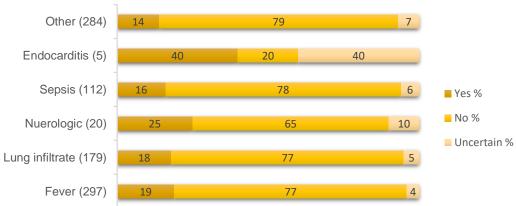
#320

Clinical Impact of Plasma Metagenomics Next-Generation Sequencing in a Large Cohort

Alice Lehman MD, Lea Goren BS, Olivia Toles BS, Nathan Rubin MS, Daniel Drozdov MD, Shannon Andrews MD, Beth Thielen MD University of Minnesota Medical Center

Background

Plasma metagenomics next-generation sequencing (mNGS) is an emerging diagnostic tool with limited literature on effective clinical implementation. Here, we describe the clinical use and implications of plasma mNGS in the largest cohort to date.


Methods

Collect plasma mNGS test at UMMC between 2016 – 2021. Record demographics, indications, conventional tests ± 30 days. Assess clinical impact as Yes/No/Uncertain and characterize as new or earlier dx, avoidance of invasive procedure, change to antimicrobials, confirmed clinical dx, unnecessary treatment or additional diagnostics or none.

Results: 570 plasma mNGS cases

31% SOT	80 died within 30 days
28% HSCT	39% <18 yrs
27% Malignancy	91% hospitalized
10% Chronic lung	4 days prior to ordering
disease	17% > 1 test

Percentage clinical impact by indication

Percentage clinical impact by underlying condition

Conditions (N)	Yes %	No %	Uncertain %	
Prematurity (21)	14	86	0	
Malignancy (153)	18	79	3	
SOT & HSCT (339)	18	77	5	
Chronic lung disease (51)	16	76	8	
Rheumatic & Gastrointestinal (38)	21	76	3	
Other (281)	15	78	7	
None (38)	10	82	8	

Accuracy by causative and contaminant organisms								
		Conv	entional	Plasma mNGS				
	N (%)	Mean	Median	Mean	Median			
Time to diagnosis(days)			4		3			
Infectious cause	255							
	(46)	77		44				
Contaminants	305							
	(60)	66		37				

Clinical Impact

- 16% Yes 78% No 6% Uncertain
- **65 New or earlier Dx** including invasive molds, toxoplasma, pneumocystis, adenovirus, anaerobic infections, nocardia, MAC, MTb, enterocytozoon, leptospira
- 25 Change in antimicrobials
- 6 Avoidance of invasive diagnostic
- 202 Negative, no action
- 109 New organism, no action

Help guide studies. Take the plasma mNGS use Survey.

Discussion

- Limited at large clinical impact
- Need subgroup analysis of underlying conditions and indication
- Earlier ordering needed

Next Steps:

- Prospective study on invasive fungal infections
- Cost-benefit modeling