Princeton Baptist Medical Center Brookwood Bantist Health

ASSESSING THE MULTISTEP APPROACH FOR CLOSTRIDIOIDES DIFFICILE INFECTION DIAGNOSIS

Mendo-Lopez, Rafael^{1,2},MD; Pacheco, Lauren², MD; Villafuerte-Galvez, Javier³, MD.

^[1] Infectious Diseases, Department of Medicine, Case Western Reserve University-University Hospitals, Cleveland, OH, ^[2]Internal Medicine, Department of Medicine, Brookwood Baptist Health, Birmingham, AL, ^[3]Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA.

BACKGROUND

- Clostridioides difficile infection (CDI) is a spore-forming anaerobic Gram-positive bacillus and the leading cause of nosocomial infectious diarrhea.
- 2017 IDSA/SHEA *C. difficile* guidelines recommend a multistep algorithm approach for CDI diagnosis.
- Algorithm entails stool testing via enzyme-linked immunosorbent assay (EIA) for glutamate dehydrogenase (GDH) and *C. difficile* toxins A/B (Tox).
- Discordant samples are arbitrated by nucleic acid amplification test (NAAT) for tcdB gene.
- GDH EIA has sensitivities >90%, while Tox EIA has sensitivities ranging from 50-90%.

OBJECTIVE

• Evaluate the diagnostic performance of GDH and Tox EIA using the multistep algorithm as the gold standard.

METHODS

STUDY DESIGN

- Type study: Secondary analysis of an inpatient dataset collected
- **Subjects:** Adults ≥ 18-years old from Princeton Baptist Medical Center (Birmingham, AL) tested for *C. difficile*
- CDI tests: Alere TechLab C. difficile Quik Chek Complete® was used to determine GDH and Tox EIA, and Alethia C. difficile DNA Amplification Assay®, a NAAT, for discordant samples.
- **CDI case:** Positive for Tox and GDH, or positive of either Tox or GDH in addition to positive NAAT.
- Retesting within the same admission was allowed.

RESULTS

FIGURE 1: PATIENT DISTRIBUTION

¹ CDI: *Clostridioides difficile* infection, ² GDH: Glutamate dehydrogenase enzyme-linked immunosorbent essay, ³ Tox: Toxin enzyme-linked immunosorbent essay

TABLE 1: CDI CASE DISTRIBUTION PER GDH AND TOXIN

Test	CDI ¹ (+)	CDI (-)	Total
GDH EIA ² (+)	47	14	61
GDH EIA (-)	1	226	227
Tox EIA ³ (+)	30	0	30
Tox EIA(-)	18	240	258
Total	48	240	288

¹ CDI: *Clostridioides difficile* infection, ² GDH: glutamate dehydrogenase enzyme-linked immunosorbent assay, ³ Toxin EIA: toxin enzyme-linked immunosorbent assay

RESULTS

TABLE 2: TEST PERFOMANCE CHARACTERISTICS

Test	Se ³	Sp4	PPV ⁵	NPV ⁶
GDH EIA ¹	97.9%	94.2%	77.1%	99.6%
Tox EIA ²	62.5%	100%	100%	93%

¹ GDH: glutamate dehydrogenase enzyme-linked immunosorbent assay, ² Toxin EIA: toxin enzyme-linked immunosorbent assay, ³ Se: sensitivity, ⁴ Sp: Specificity, ⁵ PPV: positive predictive value, ⁶ NPV: negative predictive value.

CONCLUSIONS

- Taking the multistep algorithm as a gold standard, the performance characteristics of GDH and Tox are concordant to previous descriptions in the literature, with GDH being highly sensitive and Tox being highly specific.
- A diagnostic algorithm lacking GDH and NAAT would miss over one-third of CDI cases.
- A diagnostic algorithm lacking Tox and NAAT could potentially overdiagnose about one-fifth of tested patients.

REFERENCES

 Leffler DA, Lamont JT. Clostridium difficile Infection. N Engl J Med. 2015 Apr 16;372(16):1539–48.

 McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar 19;66(7):e1–48.

 Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Linketkai BN, et al. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Off J Am Coll Gastroenterol ACG. 2021 Jun;116(6):1124-47.

 Lee HS, Plechot K, Gohil S, Le J. Clostridium difficile: Diagnosis and the Consequence of Over Diagnosis. Infect Dis Ther. 2021 Jun;10(2):687–97.

 Carroll KC, Mizusawa M. Laboratory Tests for the Diagnosis of Clostridium difficile. Clin Colon Rectal Surg. 2020 Mar;33(02):073–81.

 Ota KV, McGowan KL. Clostridium difficile Testing Algorithms Using Glutamate Dehydrogenase Antigen and C. difficile Toxin Enzyme Immunoassays with C. difficile Nucleic Acid Amplification Testing Increase Diagnostic Yield in a Tertiary Pediatric Population. J Clin Microbiol. 2012 Apr;50(4):1185–8.

Corresponding author: Rafael Mendo-Lopez, MD. Email: rxm870@case.edu