

Background

- Third generation cephalosporins (3GC) are associated with significant collateral damage:
- Reduction of 3GC use has been shown to reduce prevalence of these infections, particularly C. *difficile* and ESBLs¹²⁻¹⁵

• An increase in 3GC use was observed at South Texas Veterans Health Care System in 2019 and 2020, likely due to targeted fluoroquinolone reduction initiatives in 2019 and COVID-19 surges in 2020, leading to implementation of a bundled antimicrobial stewardship intervention targeting 3GC use

Methods

- Retrospective quasi-experimental study
- Comparing days of therapy (DOT) per 1000 patient days monthly and yearly for ceftriaxone, ceftazidime, cefpodoxime and cefdinir
- Pre-intervention: January to December 2019 and January to December 2020
- Post-intervention: January 2021 to December 2021

Table 1: Bundled interventions to reduce 3GC use

Intervention	Implementation
CAP guideline update -Ampicillin/sulbactam over ceftriaxone - first line -Amoxicillin/clavulanate for oral stepdown	December 2020
Education to hospitalist group on 3GC reduction	December 2020
Daily antibiotic stewardship pharmacist review of 3GC	January 2021
UTI guideline update -Cefazolin over ceftriaxone for empiric treatment -Cephalexin for oral stepdown	February 2021
Education to hospitalist group on UTI guideline	April 2021

Bundled Antimicrobial Stewardship Intervention Reduces Inpatient Third Generation Cephalosporin Use without Restriction

Teri Hopkins, PharmD, Linda Yang, PharmD, Dana Douglass, PharmD, Kathleen Morneau, PharmD, Jose Cadena-Zuluaga, MD, Elizabeth Walter, MD South Texas Veterans Health Care System, San Antonio, TX; The University of Texas at Austin College of Pharmacy, Austin, Texas; University of Texas Health, San Antonio

3GC use decreased by **40.73%** in 2021, compared to 2020. A **31.40%** decrease was seen in 2021 compared to 2019 (accounting for confounding due to COVID-19 surges in 2020).

Year	DOT/1000 patient days
2019	77.35
2020	89.52
2021	53.06

Conclusion

A combination of interventions without restriction of 3GC was successful in reducing inpatient use of this class of antibiotics, including through two COVID-19 surges in 2021. Further study is required to determine impact on clinical outcomes, such as *C. difficile* and antimicrobial resistance rates

1989; 23:623–31 Dis 2000:30: 55–6 Surg 1998; 133:1343-6. 9 Epidemiol 1999: 20:760–3. 1 ntern Med 2001: 135:175–83 2. Patterson JF. Hardin 1 pidemiol 2000: 21:455-8, 2 3. Rice I.B. Eckstein FC. DeVente

Disclosures: The authors have no conflicts of interest Contact: Teri Hopkins, PharmD, BCIDP, AAHIVP South Texas Veterans Health Care System Teri.Hopkins@va.gov

Concomitant Antibiotic Trends Cephalosporins Fluoroquinolones Lincosamides Narrow B-Lactams Broad Comm Rx 01920193019402010202020302040211021202130214022102

References

1.Nelson DE, Auerbach SB, Baltch AL, et al. Epidemic Clostridium difficile-associated diarrhea: role of second- and third-generation cephalosporins. Infect Control Hosp Epidemiol 1994; 15:88–94 2. de Lalla F, Privitera G, Ortisi G, et al. Third generation cephalosporins as a risk factor for Clostridium difficile–associated disease: a four-year survey in a general hospital. J Antimicrob Chemother

. Golledge CL, McKenzie T, Riley TV. Extended spectrum cephalosporins and Clostridium difficile. J Ant 4. Asensio A. Oliver A. Gonzalez-Diego P. et al. Outbreak of a multi resistant Klebsiella nneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin In

5. Paterson DL. Ko WC. Von Gottberg A. et al. International prospective study of Klebisella pneumoniae bacteremia: implications of extended spectrum beta-lactamase production in nosocomi nfections. Ann Intern Med 2004; 140:26–32

6. Dahms RA. Johnson FM. Statz CL. Lee JT. Dunn DL. Beilman G '. Ostrowsky BE, Venkataraman L, D'Agata EM, Gold HS, DeGirolami PC, Samore MH. Vancomycin-resistant enterococci in int

period. Arch Intern Med 1999; 159:1467–72. 10. 8. Loeb M, Salama S, Armstrong-Evans M, Capretta G, Olde J. A case control study to detect modifiable risk fac

). Fridkin SK, Edwards JR, Courval JM, et al. The effect of vancomycin and third-ge .0. Washio M. Mizoue T. Kaiioka T. et al. Risk factors for methicillin resistant Staphylococcus aureus (MRSA) infection in a Japanese geriatric hospital. Public Health 1997; 111:187–90.

1. Landman D. Chockalingam M. Quale IM. Reduction in the incidence of methicillin-resistant Staphylococcus aureus and ceftazidime-resistant Klebsiella pneumoniae following changes in a hos ntibiotic formulary. Clin Infect Dis 1999: 28:1062-

23:118–14. Rahal JJ. Urban C. Horn D. et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 1998: 280:1233– 15. Ludlam H, Brown N, Sule O, Redpath C, Coni N, Owen G. An antibiotic policy associated with reduced risk of Clostridium difficile-associated diarrhoea. Age Ageing 1999; 28:578-80