Impact of Indication-based Antibiotic Order Sentences on Optimal Prescribing in the Emergency Department: A Quasi-experiment

correspondence to: **Michael Veve** (mpveve@wayne.edu)

Lisa Vuong, PharmD¹; Rachel Kenney, PharmD, BCIDP¹; Julie Thomson, PharmD, BCCCP¹; Darius Faison, PharmD, BCPS¹; Michael Veve, PharmD, MPH^{1,2} ¹Henry Ford Hospital, Detroit, MI; ²Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI

Introduction

- Prior data suggested suboptimal antibiotic prescribing in the emergency department (ED)
- Common ED antimicrobial stewardship strategies are passive or labor intensive and include implementing guidelines, culture review, and prescriber education
- Antibiotic order sentences (AOS) are a non-interruptive tool that meets prescribers at the point of care

Methods

Study Design and Endpoints

This was an IRB-approved quasi-experiment in 5 hospital and 1 satellite EDs. The study aims were to:

- 1. Compare prescribing differences and patient outcomes before and after AOS implementation
- 2. Characterize the impact of AOS on optimal prescribing for LRTI, UTI, and ABSSSI
- 3. Identify patient- or healthcare-related factors associated with optimal prescribing

Subjects:

- Inclusion: ≥ 18 years of age, received an antibiotic prescription (trimethoprim/sulfamethoxazole, cephalexin, ciprofloxacin, levofloxacin, clindamycin, doxycycline) on ED discharge for an uncomplicated infection (LRTI, UTI, ABSSSI)
- Exclusion: admission to hospital or observation unit, active cancer, history of transplant, chronic dialysis, confirmed or suspected SARS-CoV-2 infection

Primary Endpoint: optimal antibiotic discharge regimen based on correct selection, dose per renal function, and short-course duration of therapy per institutional and national guidelines

Secondary Endpoints within 7 days of ED visit: non-ED outpatient visit, antibiotic escalation, Clostridioides difficile infection, adverse drug event

Analysis: a sample size of 113 per group was calculated with a two-tailed α of 0.05, 90% power, and an effect size of 20%. This was then increased by an additional 30% to 147 patients per group to increase generalizability across settings and infection types.

- Data was reported as counts and percentages or median with interquartile range (IQR)
- Bivariate analyses were performed using χ2, Fisher's exact test, or Mann-Whitney U test
- Multivariable logistic regression was performed with IBM SPSS Statistics® to determine factors associated with optimal prescribing. Variables identified as plausible or with a P<0.2 from bivariate analyses were considered for conditional backwards regression using an *n*-to-k ratio of 1:10

Results

Baseline & Clinical Characteristics

Pre-Intervention Post-Intervention

Variable (n, % or median, IQR)	Pre-Intervention	Post-Intervention	<i>P</i> -value				
variable (11, 70 of filedian, fort)	(<i>n</i> =147)	(<i>n</i> =147)	r -value				
Patient Characteristics							
Age, years	40 (26-58)	48 (31-66)	0.003				
Female, sex	108 (74)	94 (64)	0.08				
Race							
White	84 (57)	93 (63)	0.28				
Black	50 (34)	46 (31)	0.62				
Allergy to beta-lactam	26 (18)	21 (14)	0.43				
Chronic heart disease	20 (14)	21 (14.3)	0.87				
Chronic lung disease	33 (22)	48 (33)	0.05				
Renal disease	11 (8)	10 (6.8)	0.82				
Diabetes	29 (20)	29 (20)	1.0				
Infection Characteristics							
Lower Respiratory Tract Infection	25 (17)	29 (20)	0.55				
COPD exacerbation	6/25 (24)	19/25 (66)	0.003				
Community-acquired pneumonia	9/25 (76)	10 (35)	0.002				
Urinary Tract Infection	46 (31)	61 (42)	0.07				
Cystitis	19/46 (41)	18/61 (30)	0.20				
Pyelonephritis	27/46 (59)	43/61 (71)	0.20				
Acute bacterial skin and skin structure	76 (52)	57 (39)	0.03				
Abscess or purulence	38/76 (50)	33/57 (58)	0.37				
Diabetic foot infection	4/76 (5)	0	0.14				
Community-acquired polymicrobial infection	3/76 (4)	0	0.26				
Bite injury	2/76 (3)	1/57 (2)	1.0				

Secondary Endpoints Within 7 Days of ED Visit	Pre-Intervention (<i>n</i> =147)	Post-Intervention (<i>n</i> =147)	<i>P</i> -value
Any outpatient contact	31 (21)	28 (19)	0.66
Escalation of antibiotics	10 (7)	7 (5)	0.62
C. difficile infection	0	0	-
Adverse drug event	2 (1)	4 (3)	0.68

Factors Associated with Optimal Prescribing

Variable (n, %)	UnAdjOR (95% CI)	<i>P</i> -value	AdjOR (95% CI)	<i>P</i> -value
AOS Intervention	3.4 (1.7-6.8)	<0.001	3.6 (1.7-7.2)	<0.001
Cephalexin prescriptions	0.6 (0.3-1.1)	0.068	0.5 (0.26-0.98)	0.04
Fluoroquinolone prescriptions	3.9 (1.4-10.6)	0.012	Not tested	
Pyelonephritis [†]	3.0 (1.6-5.9)	<0.001	Not tested	
Chronic lung disease [†]	2.4 (1.2-4.5)	0.008	Not tested	
Black or African American race	1.6 (0.8-3.0)	0.173	Not tested	
Clindamycin prescriptions	0.8 (0.8-0.9)	0.032	Not tested	
ABSSSI: presence of purulence or abscess	0.06 (0.01-0.4)	<0.001	Not tested	

[†]Covaries with AOS intervention Hosmer and Lemeshow P=0.68

Summary

- AOS are a lean process intervention associated with improved antibiotic prescribing
- Improved optimal prescribing in common, uncomplicated infections
- AOS has the potential to expand to beyond the ED setting

Abbreviations: Acute bacterial skin and skin structure infection (ABSSSI); interquartile range (IQR); institutional review board (IRB); lower respiratory tract infection (LRTI); urinary tract infection (UTI)

