

UNIVERSITY OF UTAH

Implementation of COVID-19 Surveillance Testing Procedures in Dental School Holly Shoemaker^{1,2}, MPH, Jeri L. Bullock³, DDS, Kristina Stratford⁴, B.S., PMP, CCRP, Melodie L. Weller³, PhD, Wendy L. Hobson^{3,5}, MD, MSPH, Jeanmarie Mayer⁴, MD,

¹Department of Population Health Sciences, Spencer Fox Eccles School of Medicine, Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, Utah, USA, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, Utah, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, Utah, ²IDEAS Center of Innovation, Veterans' Affairs, Salt Lake City, ²IDEAS Center of Innovation, ²IDEAS Center of Innovation, ²IDEAS Center of Innovation, ²IDEAS Center of Innovation, ² ³School of Dentistry, University of Utah, Salt Lake City, Utah, USA, ⁴Division of Epidemiology, Department of Internal Medicine, Salt Lake City, Utah, USA, ⁵Department of Pediatrics, Spencer Fox Eccles School of Medicine, Salt Lake City, Utah, USA.

Introduction

- Dental practitioners and students of dentistry may be at increased risk of COVID-19 infection due to frequent usage of aerosol-generating procedures (AGP). Individuals in different positions within dental practice will have different exposures to AGP [1]
- To mitigate risk to patients and providers, the University of Utah School of Dentistry began regular surveillance PCR testing of its patient-facing faculty, staff, and students in May 2020. The department employed the following enhanced environmental control measures:
 - Patient pre-procedural testing within 3 days of appointments
 - Additional clinical spacing
 - HEPA filters placed in clinics to turn over the air every 10 minutes
 - All clinical providers wore fit tested N95 masks during all patient care
- We present an analysis to assess whether groups with more frequent exposure to AGP are at increased risk of positive COVID-19 surveillance test

Methods

- Surveillance PCR testing every other week for non-vaccinated individuals from May 2020 and through February 2022.
- After May 2021, fully vaccinated individuals were tested monthly and encouraged to seek additional testing if symptoms or an exposure occurred.
- We assessed risk of positive test among faculty, student, and staff groups through a Cox proportional hazards regression
- To account for inconsistent testing after vaccination, time was examined as number of tests rather than calendar time.
- Additional analysis was performed on a subgroup of the population for which survey data of direct involvement with AGP was available.

Lindsay D. Visnovsky^{2,4}, PhD, MS, Stacey E. Swilling³, DDS, Matthew Samore^{2,4}, MD

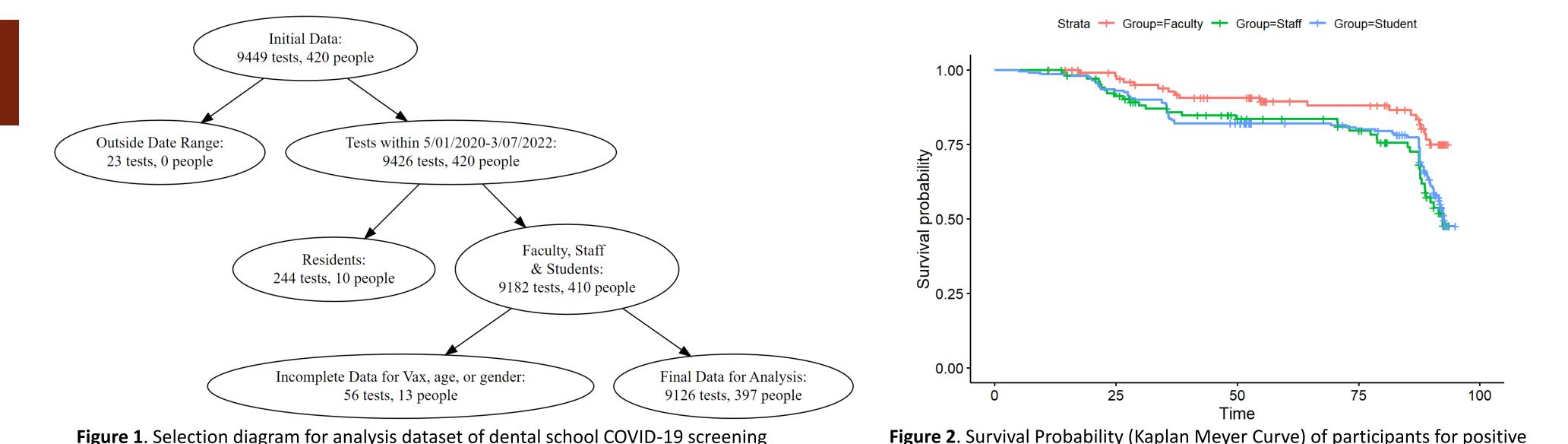
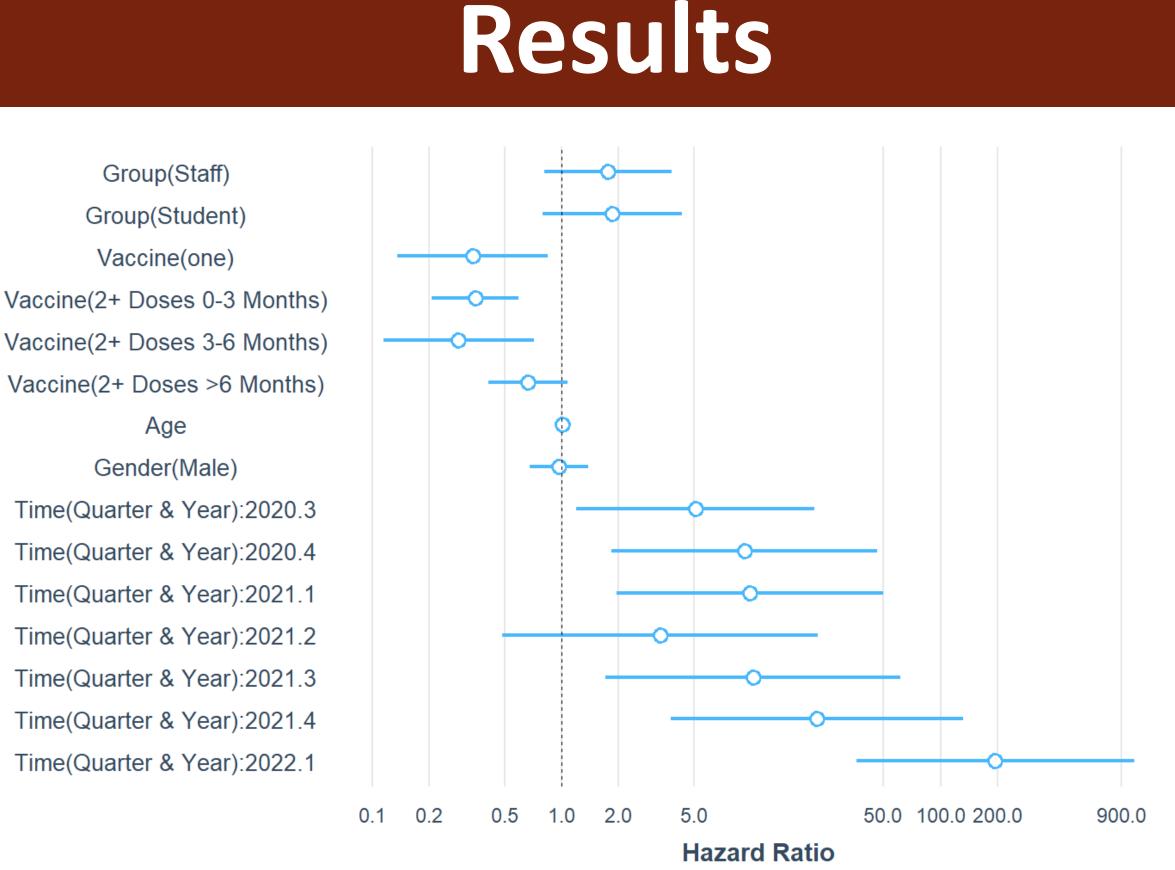


Figure 1. Selection diagram for analysis dataset of dental school COVIDparticipants

Table 1. Demographics and testing characteristics of dental school study participants. Survey Data Exists for a select subgroup of the overall population, including frequency of involvement with aerosol procedures.

	All Participants				Survey Subgroup			
	Faculty (N=104)	Staff (N=106)	Student (N=200)	Total (N=410)	Faculty (N=24)	Staff (N=23)	Student (N=69)	Total (N=116)
Age								
Median	61.5	36.0	27.0	31.0	65.5	39.0	28.0	30.5
Range	34.0 - 85.0	19.0 - 69.0	22.0 - 43.0	19.000 - 85.0	38.0 - 85.0	24.0 - 69.0	22.0 - 43.0	22.0 - 85.0
Mean (SD)	59.0 (12.8)	37.857 (11.2)	27.9 (3.3)	38.4 (15.6)	62.2 (13.8)	43.7 (13.1)	28.7 (4.1)	38.6 (16.2)
Gender								
N-Miss	0	8	0	8	0	0	0	0
F	15 (14.4%)	83 (84.7%)	68 (34.0%)	166 (41.3%)	5 (20.8%)	20 (87.0%)	30 (43.5%)	55 (47.4%)
Μ	89 (85.6%)	15 (15.3%)	132 (66.0%)	236 (58.7%)	19 (79.2%)	3 (13.0%)	39 (56.5%)	61 (52.6%)
Total # of Tests								
Median	22.0	20.5	25.0	24.0	30.0	29.0	26.0	27.0
Range	1.0 - 50.0	1.0 - 45.0	10.0 - 41.0	1.0 - 50.0	23.0 - 50.0	8.0 - 40.0	12.0 - 37.0	8.0 - 50.0
Mean (SD)	21.5 (12.058)	20.4 (13.1)	24.0 (5.8)	22.5 (10.0)	32.8 (8.0)	28.0 (9.0)	24.7 (5.4)	27.0 (7.5)
Total Positive Tests								
0	85 (81.7%)	68 (64.2%)	122 (61.0%)	275 (67.1%)	18 (75.0%)	13 (56.5%)	42 (60.9%)	73 (62.9%)
1	16 (15.4%)	32 (30.2%)	64 (32.0%)	112 (27.3%)	5 (20.8%)	6 (26.1%)	22 (31.9%)	33 (28.4%)
2	3 (2.9%)	6 (5.7%)	14 (7.0%)	23 (5.6%)	1 (4.2%)	4 (17.4%)	5 (7.2%)	10 (8.6%)
Follow-up time (weeks from final to last observation)								
Median	77.5	73.6	74.3	74.6	88.0	88.6	74.9	77.9
Range	0.0 - 91.3	0.0 - 91.9	33.6 - 91.6	0.0 - 91.9	52.0 - 91.3	26.0 - 91.7	44.1 - 90.0	26.0 - 91.7
Mean (SD)	64.8 (27.6)	59.7 (32.0)	68.2 (13.1)	65.1 (23.5)	84.7 (8.6)	80.0 (19.8)	69.0 (13.7)	74.4 (15.7)
Max Vaccines Reported by end of follow-up								
N-Miss	2	9	0	11	0	1	0	1
0	14 (13.7%)	19 (19.6%)	19 (9.5%)	52 (13.0%)	0 (0.0%)	1 (4.5%)	7 (10.1%)	8 (7.0%)
1	4 (3.9%)	7 (7.2%)	10 (5.0%)	21 (5.3%)	1 (4.2%)	0 (0.0%)	2 (2.9%)	3 (2.6%)
2	34 (33.3%)	46 (47.4%)	105 (52.5%)	185 (46.4%)	5 (20.8%)	12 (54.5%)	33 (47.8%)	50 (43.5%)
3	50 (49.0%)	25 (25.8%)	66 (33.0%)	141 (35.3%)	18 (75.0%)	9 (40.9%)	27 (39.1%)	54 (47.0%)
Aerosol Procedure Frequency	,							
N-Miss	_	-	-	-	1	0	0	1
Often/Frequently (Once a per week or more)	-	-	-	-	16 (69.6%)	9 (39.1%)	59 (85.5%)	84 (73.0%)
Once a month or less	-	-	-	-	7 (30.4%)	14 (60.9%)	10 (14.5%)	31 (27.0%)


Figure 2. Survival Probability (Kaplan Meyer Curve) of participants for positive COVID-19 screening test.

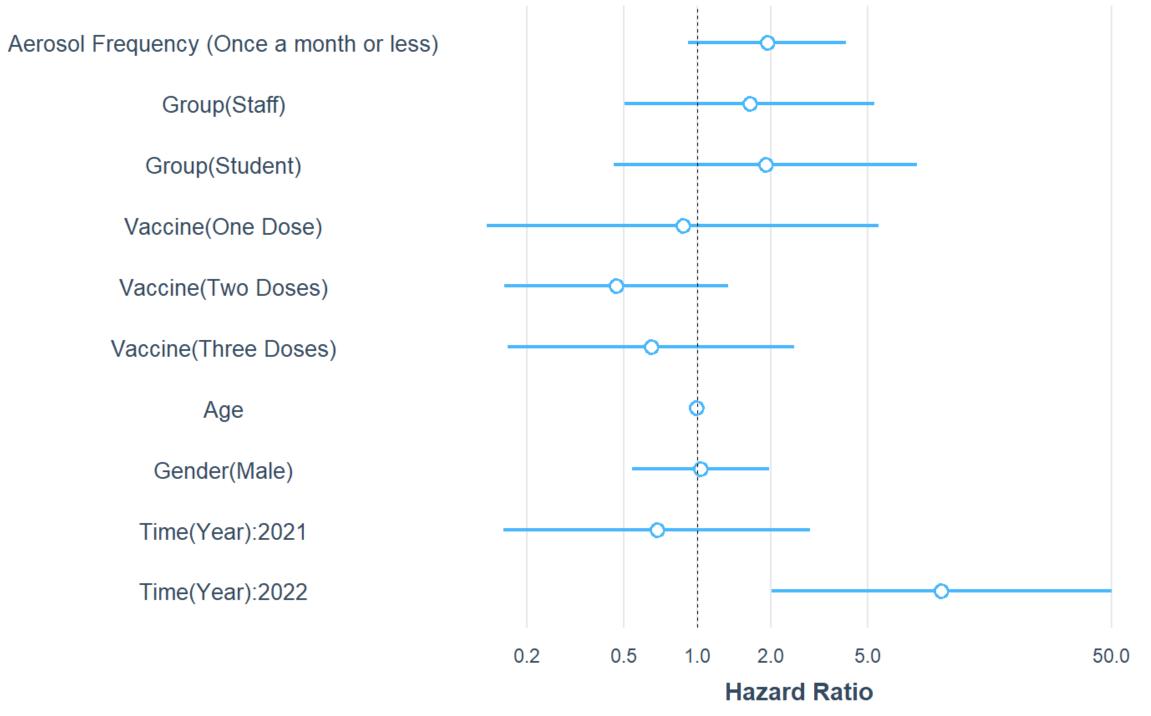

Results

Figure 3. Risk of positive COVID-19 screening test in dental school participants from Cox proportional hazards regression, accounting for multiple events and time-dependent variables with the Andersen-Gill model. To account for inconsistent testing after vaccination, time was examined as number of tests rather than calendar time.

Figure 4. Risk of positive COVID-19 screening test in subgroup of dental school participants from Cox proportional hazards regression, accounting for multiple events and time-dependent variables with the Andersen-Gill model. To account for inconsistent testing after vaccination, time was examined as number of tests rather than calendar time. Frequent involvement with AGP was more common than less frequent AGP involvement, so frequent AGP use (Once a week or more) was used a reference.

References 2021: 105:103565

Conclusion

• Within this dental setting we do not see evidence that work role and resulting exposures increase risk when prevention measures are in place.