Effectiveness of Remdesivir as Treatment for COVID-19 Positive US Veterans

Sujee Jeyapalina^{1,2}; Margaret Lundquist²; Guo Wei³; Greg Stoddard³; Jayant Agarwal^{1,2} ¹Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City. ²WIVR, Research, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City. ³Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT.

Background

- Globally, COVID-19 disease has now claimed <u>nearly</u> 6.55 million lives.
- Antiviral treatment options are currently limited.
- As of October 2020, <u>Remdesivir</u> (GS-5734, VEKLURY®)—an analog of adenosine nucleotide—is the only antiviral drug that received FDA approval for treating COVID-19 disease.
- One of the subgroups of patients that the NIH guidelines recommend for using Remdesivir was hospitalized patients with low-flow supplemental oxygen.
- As of September 2022, WHO guidelines were updated to conditionally recommend Remdesivir for non-severe and severe patients but not those with critical conditions.
- This retrospective cohort data analysis was undertaken to evaluate and clarify the effectiveness of Remdesivir use in older, hospitalized US veterans.

Method

- The deidentified veterans' data were collected using the VA COVID-19 Shared Data (IRB# 00133238).
- Propensity-matched cohorts with and without Remdesivir treatment were analyzed using Cox regression models.
- Immortal time and calendar time biases were taken into consideration.
- Limited to hospitalized veterans, patients were followed for 60 days to the outcomes of a mechanical ventilator (MV) use and death in separate models.
- The cohort was also limited to those who received low-flow without high-flow oxygen and a combination of low and high-flow oxygen in another set of models.

		** **		D
	lotal	Without Remdesivir	With Remdesivir treatment	P- value
		treatment	treatment	varue
Cohort	N=3,372	N=1,686	N=1,686	
Patient characteristics				
Age (year)	66.9 (13.9)	67.0 (13.8)	66.8 (14.1)	0.68
Race				
White	2,129 (63.1%)	1,065 (63.2%)	1,064 (63.1%)	0.93
Black or African American	679 (20.1%)	342 (20.3%)	337 (20.0%)	
Hispanic or Latino	284 (8.4%)	144 (8.5%)	140 (8.3%)	
Others	280 (8.3%)	135 (8.0%)	145 (8.6%)	
DMU				
Divil groups(kg/m²)				0.87
Underweight (< 18.5)	92 (2.7%)	46 (2.7%)	46 (2.7%)	
Normal weight (18.5 - 24.9)	733 (21.7%)	357 (21.2%)	376 (22.3%)	
Overweight (25 - 29.9)	1,009 (29.9%)	505 (30.0%)	504 (29.9%)	
Obese (30 - 39.9)	1,257 (37.3%)	644 (38.2%)	613 (36.4%)	
Morbidly Obese (40+)	270 (8.0%)	129 (7.7%)	141 (8.4%)	
Unknown	11 (0.3%)	5 (0.3%)	6 (0.4%)	
Geographic location				
Midwest	695 (20.6%)	350 (20.8%)	345 (20.5%)	0.87
Northeast	235 (7.0%)	119 (7.1%)	116 (6.9%)	
Others	291 (8.6%)	139 (8.2%)	152 (9.0%)	
Southeast	1,065 (31.6%)	546 (32.4%)	519 (30.8%)	
Southwest	565 (16.8%)	275 (16.3%)	290 (17.2%)	
West	521 (15.5%)	257 (15.2%)	264 (15.7%)	
Dunglitz				
		126 (0 10/)	1(0(050/)	0.26
City Iown	296 (8.8%)	130 (8.1%)	100 (9.5%)	
Small Iown Kural	265 (7.9%)	132 (7.8%)	133 (7.9%)	
Urban	2,532 (75.1%)	1,288 (76.4%)	1,244 (73.8%)	
Unknown	279 (8.3%)	130 (7.7%)	149 (8.8%)	
*Index date (by months)				
Jan - Feb	4 (%)	2 (%)	2 (%)	1.00
Mar - Apr	316 (%)	158 (%)	158 (%)	
May - Jun	148 (%)	74 (%)	74 (%)	
Jul – Aug	1,372 (%)	686 (%)	686 (%)	
Sep – Oct	1,326 (%)	663 (%)	663 (%)	
Nov - Dec	206 (%)	103 (%)	103 (%)	

Results

- A total
- propensity
- (**Table 1**).

- therapy.

Death

- Ventilation

Table 1. Demographic characteristics

of 3,372 veterans were included (hospitalized between 01 January to 31 December 2021 for COVID-19 disease).

1,686 received Remdesivir treatment, while their matches never received Remdesivir. After score matching (demographics, vaccination status, comorbidities, medication use, lab tests), Remdesivir recipients and controls were similar in age (66.8±14.1 vs. 67.0±13.8 years

Significant relative risk reductions (1-HR), 53% for MV, and 42% for death (Fig. 1) were observed with low-flow oxygen and Remdesivir therapy.

In veterans who received high and low-flow oxygen, although there was a significant relative 18% reduction in risk for death with Remdesivir treatment, progression to MV was not significantly reduced (relative 12% reduction, p=0.22). The 12% may be clinically significant, but our available N provided adequate power (80%) only for a relative reduction of at least 17%.

These results are displayed graphically with Kaplan-Meier plots (Fig. 2).

A higher proportion of Veterans overall fared the disease well when receiving a low flow oxygen

Fig. 2: Kaplan-Meier survival curves showing progression to MV or death probabilities between Remdesivir recipients and control veterans

Conclusion

The data showed significant risk reductions of disease progression to MV/death when Remdesivir was used in COVID-19positive patients with low supplementary oxygen flow, supporting the current NIH guidelines.

Acknowledgment: The authors would like to express their sincere gratitude to all those who contributed to the setup and maintenance of the Veterans Affairs COVID-19 Shared Data Resource domain.

